These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37435749)
1. A smartphone-integrated low-cost, reagent-free, non-destructive dried blood spot-based paper sensor for hematocrit measurement. Sinha S; Basu A; Shukla J; Dasgupta S; Dutta G; Das S Anal Methods; 2023 Jul; 15(29):3532-3542. PubMed ID: 37435749 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous quantitative detection of hematocrit and hemoglobin from whole blood using a multiplexed paper sensor with a smartphone interface. Anjali ; Das S; Chakraborty S Lab Chip; 2023 Jan; 23(2):318-329. PubMed ID: 36562505 [TBL] [Abstract][Full Text] [Related]
3. Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method. Capiau S; Wilk LS; De Kesel PMM; Aalders MCG; Stove CP Anal Chem; 2018 Feb; 90(3):1795-1804. PubMed ID: 29281263 [TBL] [Abstract][Full Text] [Related]
4. Potassium-based algorithm allows correction for the hematocrit bias in quantitative analysis of caffeine and its major metabolite in dried blood spots. De Kesel PM; Capiau S; Stove VV; Lambert WE; Stove CP Anal Bioanal Chem; 2014 Oct; 406(26):6749-55. PubMed ID: 25168119 [TBL] [Abstract][Full Text] [Related]
5. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer. Capiau S; Stove VV; Lambert WE; Stove CP Anal Chem; 2013 Jan; 85(1):404-10. PubMed ID: 23190205 [TBL] [Abstract][Full Text] [Related]
6. Smartphone-Integrated Label-Free Rapid Screening of Anemia from the Pattern Formed by One Drop of Blood on a Wet Paper Strip. Laha S; Bandopadhyay A; Chakraborty S ACS Sens; 2022 Jul; 7(7):2028-2036. PubMed ID: 35802863 [TBL] [Abstract][Full Text] [Related]
7. New microfluidic-based sampling procedure for overcoming the hematocrit problem associated with dried blood spot analysis. Leuthold LA; Heudi O; Déglon J; Raccuglia M; Augsburger M; Picard F; Kretz O; Thomas A Anal Chem; 2015 Feb; 87(4):2068-71. PubMed ID: 25607538 [TBL] [Abstract][Full Text] [Related]
8. Application of non-contact hematocrit prediction technologies to overcome hematocrit effects on immunosuppressant quantification from dried blood spots. Deprez S; Heughebaert L; Boffel L; Stove CP Talanta; 2023 Mar; 254():124111. PubMed ID: 36462285 [TBL] [Abstract][Full Text] [Related]
9. Estimation of hematocrit in filter paper dried bloodspots by potassium measurement: advantage of use of perimeter ring samples over circular center sub-punch samples. Rufail ML; McCloskey LJ; Stickle DF Clin Chem Lab Med; 2017 Jan; 55(1):53-57. PubMed ID: 27331309 [TBL] [Abstract][Full Text] [Related]
10. Quantitative hematocrit measurement of whole blood in a point-of-care lateral flow device using a smartphone flow tracking app. Frantz E; Li H; Steckl AJ Biosens Bioelectron; 2020 Sep; 163():112300. PubMed ID: 32568698 [TBL] [Abstract][Full Text] [Related]
11. Development of an LC-MS/MS method to simultaneously quantify therapeutic mAbs and estimate hematocrit values in dried blood spot samples. Chiu HH; Tsai YJ; Lo C; Liao HW; Lin CH; Tang SC; Kuo CH Anal Chim Acta; 2022 Jan; 1189():339231. PubMed ID: 34815034 [TBL] [Abstract][Full Text] [Related]
12. Addressing New Possibilities and New Challenges: Automated Nondestructive Hematocrit Normalization for Dried Blood Spots. Luginbühl M; Gaugler S Ther Drug Monit; 2021 Jun; 43(3):346-350. PubMed ID: 33973966 [TBL] [Abstract][Full Text] [Related]
13. Determination of haemoglobin derivatives in aged dried blood spot to estimate haematocrit. Zakaria R; Allen KJ; Koplin JJ; Crinis N; De Rosa L; Roche P; Greaves RF Clin Chem Lab Med; 2019 Jun; 57(7):1026-1034. PubMed ID: 30838831 [TBL] [Abstract][Full Text] [Related]
14. The effect of hematocrit and punch location on assay bias during quantitative bioanalysis of dried blood spot samples. O'Mara M; Hudson-Curtis B; Olson K; Yueh Y; Dunn J; Spooner N Bioanalysis; 2011 Oct; 3(20):2335-47. PubMed ID: 22011181 [TBL] [Abstract][Full Text] [Related]
15. Fully automated correction for the hematocrit bias of non-volumetric dried blood spot phosphatidylethanol analysis. Luginbühl M; Stöth F; Weinmann W; Gaugler S Alcohol; 2021 Aug; 94():17-23. PubMed ID: 33865941 [TBL] [Abstract][Full Text] [Related]
16. Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS. Lange T; Thomas A; Walpurgis K; Thevis M Anal Bioanal Chem; 2020 Jun; 412(15):3765-3777. PubMed ID: 32300840 [TBL] [Abstract][Full Text] [Related]
17. Identification of potential sphingomyelin markers for the estimation of hematocrit in dried blood spots via a lipidomic strategy. Liao HW; Lin SW; Lin YT; Lee CH; Kuo CH Anal Chim Acta; 2018 Mar; 1003():34-41. PubMed ID: 29317027 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the Performance and Hematocrit Independence of the HemaPEN as a Volumetric Dried Blood Spot Collection Device. Deprez S; Paniagua-González L; Velghe S; Stove CP Anal Chem; 2019 Nov; 91(22):14467-14475. PubMed ID: 31638372 [TBL] [Abstract][Full Text] [Related]
19. A device for dried blood microsampling in quantitative bioanalysis: overcoming the issues associated blood hematocrit. Spooner N; Denniff P; Michielsen L; De Vries R; Ji QC; Arnold ME; Woods K; Woolf EJ; Xu Y; Boutet V; Zane P; Kushon S; Rudge JB Bioanalysis; 2015; 7(6):653-9. PubMed ID: 25514576 [TBL] [Abstract][Full Text] [Related]