These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. ADMP controls the size of Spemann's organizer through a network of self-regulating expansion-restriction signals. Leibovich A; Kot-Leibovich H; Ben-Zvi D; Fainsod A BMC Biol; 2018 Jan; 16(1):13. PubMed ID: 29357852 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer. Reid CD; Zhang Y; Sheets MD; Kessler DS Dev Biol; 2012 Aug; 368(2):231-41. PubMed ID: 22627292 [TBL] [Abstract][Full Text] [Related]
5. Self-regulation of the head-inducing properties of the Spemann organizer. Inui M; Montagner M; Ben-Zvi D; Martello G; Soligo S; Manfrin A; Aragona M; Enzo E; Zacchigna L; Zanconato F; Azzolin L; Dupont S; Cordenonsi M; Piccolo S Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15354-9. PubMed ID: 22949641 [TBL] [Abstract][Full Text] [Related]
6. Siamois and Twin are redundant and essential in formation of the Spemann organizer. Bae S; Reid CD; Kessler DS Dev Biol; 2011 Apr; 352(2):367-81. PubMed ID: 21295564 [TBL] [Abstract][Full Text] [Related]
7. Mink1 regulates spemann organizer cell fate in the xenopus gastrula via Hmga2. Colleluori V; Khokha MK Dev Biol; 2023 Mar; 495():42-53. PubMed ID: 36572140 [TBL] [Abstract][Full Text] [Related]
8. Expression of the ALK1 family of type I BMP/ADMP receptors during gastrula stages in Xenopus embryos. Leibovich A; Steinbeißer H; Fainsod A Int J Dev Biol; 2017; 61(6-7):465-470. PubMed ID: 28695967 [TBL] [Abstract][Full Text] [Related]
9. ZSWIM4 regulates embryonic patterning and BMP signaling by promoting nuclear Smad1 degradation. Wang C; Liu Z; Zeng Y; Zhou L; Long Q; Hassan IU; Zhang Y; Qi X; Cai D; Mao B; Lu G; Sun J; Yao Y; Deng Y; Zhao Q; Feng B; Zhou Q; Chan WY; Zhao H EMBO Rep; 2024 Feb; 25(2):646-671. PubMed ID: 38177922 [TBL] [Abstract][Full Text] [Related]
10. Two modes of action by which Xenopus hairy2b establishes tissue demarcation in the Spemann-Mangold organizer. Murato Y; Yamaguti M; Katamura M; Cho KW; Hashimoto C Int J Dev Biol; 2006; 50(5):463-71. PubMed ID: 16586347 [TBL] [Abstract][Full Text] [Related]
11. The Xcad-2 gene can provide a ventral signal independent of BMP-4. Pillemer G; Yelin R; Epstein M; Gont L; Frumkin Y; Yisraeli JK; Steinbeisser H; Fainsod A Mech Dev; 1998 Jun; 74(1-2):133-43. PubMed ID: 9651504 [TBL] [Abstract][Full Text] [Related]
12. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. Zohn IE; Brivanlou AH Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023 [TBL] [Abstract][Full Text] [Related]
13. Cardiac looping and the vertebrate left-right axis: antagonism of left-sided Vg1 activity by a right-sided ALK2-dependent BMP pathway. Ramsdell AF; Yost HJ Development; 1999 Dec; 126(23):5195-205. PubMed ID: 10556046 [TBL] [Abstract][Full Text] [Related]
14. Xmab21l3 mediates dorsoventral patterning in Xenopus laevis. Sridharan J; Haremaki T; Jin Y; Teegala S; Weinstein DC Mech Dev; 2012 Jul; 129(5-8):136-46. PubMed ID: 22609272 [TBL] [Abstract][Full Text] [Related]
15. XBMPRII, a novel Xenopus type II receptor mediating BMP signaling in embryonic tissues. Frisch A; Wright CV Development; 1998 Feb; 125(3):431-42. PubMed ID: 9425138 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos. Lee SY; Lim SK; Cha SW; Yoon J; Lee SH; Lee HS; Park JB; Lee JY; Kim SC; Kim J Differentiation; 2011 Sep; 82(2):99-107. PubMed ID: 21684060 [TBL] [Abstract][Full Text] [Related]
17. The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer. Chang LS; Kim M; Glinka A; Reinhard C; Niehrs C Elife; 2020 Jan; 9():. PubMed ID: 31934854 [TBL] [Abstract][Full Text] [Related]
18. Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo. Li HY; El Yakoubi W; Shi DL Int J Dev Biol; 2015; 59(10-12):443-51. PubMed ID: 26009239 [TBL] [Abstract][Full Text] [Related]
19. Klf4 is required for germ-layer differentiation and body axis patterning during Xenopus embryogenesis. Cao Q; Zhang X; Lu L; Yang L; Gao J; Gao Y; Ma H; Cao Y Development; 2012 Nov; 139(21):3950-61. PubMed ID: 22992953 [TBL] [Abstract][Full Text] [Related]
20. A role for Xenopus Frizzled 8 in dorsal development. Itoh K; Jacob J; Y Sokol S Mech Dev; 1998 Jun; 74(1-2):145-57. PubMed ID: 9651509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]