These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37435783)

  • 41. Determination of 3-Alkyl-2-methoxypyrazines in Green Coffee: A Study To Unravel Their Role on Coffee Quality.
    Mutarutwa D; Navarini L; Lonzarich V; Crisafulli P; Compagnone D; Pittia P
    J Agric Food Chem; 2020 Apr; 68(17):4743-4751. PubMed ID: 31838839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enantiodifferentiation of 3-sec-butyl-2-methoxypyrazine in different species using multidimensional and comprehensive two-dimensional gas chromatographic approaches.
    Legrum C; Slabizki P; Schmarr HG
    Anal Bioanal Chem; 2015 Jan; 407(1):253-63. PubMed ID: 25146352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of Methoxypyrazine Content and Expression Pattern of
    Zhang Y; Li X; Guo X; Wang N; Geng K; Li D; Wang Z
    Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of 3-alkyl-2-methoxypyrazines in lady beetle-infested wine by solid-phase microextraction headspace sampling.
    Galvan TL; Kells S; Hutchison WD
    J Agric Food Chem; 2008 Feb; 56(3):1065-71. PubMed ID: 18193837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Headspace solid-phase microextraction analysis of 3-alkyl-2-methoxypyrazines in wines.
    Sala C; Mestres M; Martí MP; Busto O; Guasch J
    J Chromatogr A; 2002 Apr; 953(1-2):1-6. PubMed ID: 12058923
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of odor-active compounds in grapes and wines from vitis vinifera and non-foxy American grape species.
    Sun Q; Gates MJ; Lavin EH; Acree TE; Sacks GL
    J Agric Food Chem; 2011 Oct; 59(19):10657-64. PubMed ID: 21879766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical and Sensory Evaluation of Silicone and Polylactic Acid-Based Remedial Treatments for Elevated Methoxypyrazine Levels in Wine.
    Botezatu A; Kemp BS; Pickering GJ
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27649129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of sesquiterpene hydrocarbons in grape berry exocarp (
    Könen PP; Wüst M
    Beilstein J Org Chem; 2019; 15():1945-1961. PubMed ID: 31501661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of methoxypyrazines in wine using headspace solid phase microextraction with isotope dilution and comprehensive two-dimensional gas chromatography.
    Ryan D; Watkins P; Smith J; Allen M; Marriott P
    J Sep Sci; 2005 Jun; 28(9-10):1075-82. PubMed ID: 16013834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GC-MS aroma characterization of vegetable matrices: Focus on 3-alkyl-2-methoxypyrazines.
    Mutarutwa D; Navarini L; Lonzarich V; Compagnone D; Pittia P
    J Mass Spectrom; 2018 Sep; 53(9):871-881. PubMed ID: 30019367
    [No Abstract]   [Full Text] [Related]  

  • 51. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds.
    Panighel A; Flamini R
    Molecules; 2014 Dec; 19(12):21291-309. PubMed ID: 25529017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes.
    Li Z; Howell K; Fang Z; Zhang P
    Compr Rev Food Sci Food Saf; 2020 Jan; 19(1):247-281. PubMed ID: 33319521
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using targeted metabolomics to elucidate the indole auxin network in plants.
    Cohen JD; Tang Q; Hegeman AD
    Methods Enzymol; 2022; 676():239-278. PubMed ID: 36280352
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of vine training and sunlight exposure on the 3-alkyl-2-methoxypyrazines content in musts and wines from the Vitis vinifera variety cabernet sauvignon.
    Sala C; Busto O; Guasch J; Zamora F
    J Agric Food Chem; 2004 Jun; 52(11):3492-7. PubMed ID: 15161221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Volatile aroma compounds in wines from Chinese wild/hybrid species.
    Wei Z; Liu X; Huang Y; Lu J; Zhang Y
    J Food Biochem; 2019 Oct; 43(10):e12684. PubMed ID: 31608471
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification and quantification of geosmin, an earthy odorant contaminating wines.
    Darriet P; Pons M; Lamy S; Dubourdieu D
    J Agric Food Chem; 2000 Oct; 48(10):4835-8. PubMed ID: 11052742
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of alkyl-methoxypyrazines as the malodorous compounds in water supplies from Northwest Spain.
    Ventura F; Quintana J; Gómez M; Velo-Cid M
    Bull Environ Contam Toxicol; 2010 Aug; 85(2):160-4. PubMed ID: 20607214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Grape cluster microclimate influences the aroma composition of Sauvignon blanc wine.
    Martin D; Grose C; Fedrizzi B; Stuart L; Albright A; McLachlan A
    Food Chem; 2016 Nov; 210():640-7. PubMed ID: 27211692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pyrazines: A diverse class of earthy-musty odorants impacting drinking water quality and consumer satisfaction.
    Wang C; Yu J; Gallagher DL; Byrd J; Yao W; Wang Q; Guo Q; Dietrich AM; Yang M
    Water Res; 2020 Sep; 182():115971. PubMed ID: 32554269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.