These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37435960)

  • 1. Chemistry Aspects and Designing Strategies of Flexible Materials for High-Performance Flexible Lithium-Ion Batteries.
    Khurram Tufail M; Ahmed A; Rafiq M; Asif Nawaz M; Shoaib Ahmad Shah S; Sohail M; Sufyan Javed M; Najam T; Althomali RH; Rahman MM
    Chem Rec; 2024 Jan; 24(1):e202300155. PubMed ID: 37435960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review on carbonaceous materials and metal composites in deformable electrodes for flexible lithium-ion batteries.
    Islam J; Chowdhury FI; Uddin J; Amin R; Uddin J
    RSC Adv; 2021 Feb; 11(11):5958-5992. PubMed ID: 35423128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries.
    Wu N; Shi YR; Lang SY; Zhou JM; Liang JY; Wang W; Tan SJ; Yin YX; Wen R; Guo YG
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18146-18149. PubMed ID: 31591785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Paper-Based Flexible Li-Ion Batteries Made by a Rod Coating Method.
    Zeng L; Chen S; Liu M; Cheng HM; Qiu L
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46776-46782. PubMed ID: 31755259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible supercapacitor electrodes using metal-organic frameworks.
    Cherusseri J; Pandey D; Sambath Kumar K; Thomas J; Zhai L
    Nanoscale; 2020 Sep; 12(34):17649-17662. PubMed ID: 32820760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics.
    Kim SH; Choi KH; Cho SJ; Choi S; Park S; Lee SY
    Nano Lett; 2015 Aug; 15(8):5168-77. PubMed ID: 26176939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Li[Li
    Li Y; Zhang H; Xiao Z; Wang R
    Front Chem; 2019; 7():555. PubMed ID: 31448262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications.
    Lu C; Chen X
    Acc Chem Res; 2020 Aug; 53(8):1468-1477. PubMed ID: 32658447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.
    Lv T; Liu M; Zhu D; Gan L; Chen T
    Adv Mater; 2018 Apr; 30(17):e1705489. PubMed ID: 29479744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material Choice and Structure Design of Flexible Battery Electrode.
    Xia X; Yang J; Liu Y; Zhang J; Shang J; Liu B; Li S; Li W
    Adv Sci (Weinh); 2023 Jan; 10(3):e2204875. PubMed ID: 36403240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
    Peng HJ; Huang JQ; Zhang Q
    Chem Soc Rev; 2017 Aug; 46(17):5237-5288. PubMed ID: 28783188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Issues and Challenges Facing Flexible Lithium-Ion Batteries for Practical Application.
    Cha H; Kim J; Lee Y; Cho J; Park M
    Small; 2018 Oct; 14(43):e1702989. PubMed ID: 29280279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.
    Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J
    Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards flexible solid-state supercapacitors for smart and wearable electronics.
    Dubal DP; Chodankar NR; Kim DH; Gomez-Romero P
    Chem Soc Rev; 2018 Mar; 47(6):2065-2129. PubMed ID: 29399689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices.
    Wen L; Li F; Cheng HM
    Adv Mater; 2016 Jun; 28(22):4306-37. PubMed ID: 26748581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation on the Intrinsic Physicoelectrochemical Attributes and Engineering of Micro-, Nano-, and 2D-Structured Allotropic Carbon-Based Papers for Flexible Electronics.
    Kongkaew S; Meng L; Limbut W; Kanatharana P; Thavarungkul P; Mak WC
    Langmuir; 2021 Dec; 37(49):14302-14313. PubMed ID: 34859679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization.
    Chen K; Yang DY; Huang G; Zhang XB
    Acc Chem Res; 2021 Feb; 54(3):632-641. PubMed ID: 33449629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization.
    Dong H; Li J; Guo J; Lai F; Zhao F; Jiao Y; Brett DJL; Liu T; He G; Parkin IP
    Adv Mater; 2021 May; 33(20):e2007548. PubMed ID: 33797810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kirigami-Inspired Flexible Lithium-Ion Batteries via Transformation of Concentrated Stress into Segmented Strain.
    Meng Q; Zhu J; Kang C; Xiao X; Ma Y; Huo H; Zuo P; Du C; Lou S; Yin G
    Small; 2022 Nov; 18(45):e2204745. PubMed ID: 36148862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.