These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37435960)

  • 21. Facile Development Strategy of a Single Carbon-Fiber-Based All-Solid-State Flexible Lithium-Ion Battery for Wearable Electronics.
    Yadav A; De B; Singh SK; Sinha P; Kar KK
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7974-7980. PubMed ID: 30715836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries.
    Dantas R; Ribeiro C; Souto M
    Chem Commun (Camb); 2023 Dec; 60(2):138-149. PubMed ID: 38051115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Regulating Role of Carbon Nanotubes and Graphene in Lithium-Ion and Lithium-Sulfur Batteries.
    Fang R; Chen K; Yin L; Sun Z; Li F; Cheng HM
    Adv Mater; 2019 Mar; 31(9):e1800863. PubMed ID: 29984484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics.
    Wu Z; Wang Y; Liu X; Lv C; Li Y; Wei D; Liu Z
    Adv Mater; 2019 Mar; 31(9):e1800716. PubMed ID: 30680813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review on Polymer-Based Composite Electrolytes for Lithium Batteries.
    Yao P; Yu H; Ding Z; Liu Y; Lu J; Lavorgna M; Wu J; Liu X
    Front Chem; 2019; 7():522. PubMed ID: 31440498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced Carbon for Flexible and Wearable Electronics.
    Wang C; Xia K; Wang H; Liang X; Yin Z; Zhang Y
    Adv Mater; 2019 Mar; 31(9):e1801072. PubMed ID: 30300444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Polymerized 1,3-Dioxolane Electrolyte for Integrated Solid-State Lithium Batteries.
    Mi YQ; Deng W; He C; Eksik O; Zheng YP; Yao K; Liu XB; Yin YH; Li YS; Xia BY; Wu ZP
    Angew Chem Int Ed Engl; 2023 Mar; 62(12):e202218621. PubMed ID: 36658098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices.
    Xiao X; Zheng Z; Zhong X; Gao R; Piao Z; Jiao M; Zhou G
    ACS Nano; 2023 Feb; 17(3):1764-1802. PubMed ID: 36716429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review.
    Wang Z; Jin W; Huang X; Lu G; Li Y
    Chem Rec; 2020 Oct; 20(10):1198-1219. PubMed ID: 32881320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monolithic Microparticles Facilitated Flower-Like TiO
    Luo L; Liang K; Khanam Z; Yao X; Mushtaq M; Ouyang T; Balogun MS; Tong Y
    Small; 2024 May; 20(22):e2307103. PubMed ID: 38213015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries.
    Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M
    ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices.
    Bocchetta P; Frattini D; Ghosh S; Mohan AMV; Kumar Y; Kwon Y
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Covalent Organic Framework-based Solid-State Electrolytes, Electrode Materials, and Separators for Lithium-ion Batteries.
    Zhu Y; Bai Q; Ouyang S; Jin Y; Zhang W
    ChemSusChem; 2024 Jan; 17(1):e202301118. PubMed ID: 37706226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries.
    Ma L; Zhang W; Wang L; Hu Y; Zhu G; Wang Y; Chen R; Chen T; Tie Z; Liu J; Jin Z
    ACS Nano; 2018 May; 12(5):4868-4876. PubMed ID: 29683639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A flexible and conductive MXene-coated fabric integrated with in situ sulfur loaded MXene nanosheets for long-life rechargeable Li-S batteries.
    Liu K; Fan Y; Ali A; Shen PK
    Nanoscale; 2021 Feb; 13(5):2963-2971. PubMed ID: 33508049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible Ti
    Wang M; Li D; Xu H; Wang L; Li Y; Li G; Li J; Han W
    Small; 2024 Mar; 20(11):e2305530. PubMed ID: 37926758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode.
    Kang C; Cha E; Baskaran R; Choi W
    Nanotechnology; 2016 Mar; 27(10):105402. PubMed ID: 26861692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathways of Developing High-Energy-Density Flexible Lithium Batteries.
    Chang J; Huang Q; Gao Y; Zheng Z
    Adv Mater; 2021 Nov; 33(46):e2004419. PubMed ID: 33598991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries.
    Cui S; Miao W; Peng H; Ma G; Lei Z; Zhu L; Xu Y
    Chemistry; 2024 Feb; 30(12):e202303320. PubMed ID: 38126628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lithium Titanate Cuboid Arrays Grown on Carbon Fiber Cloth for High-Rate Flexible Lithium-Ion Batteries.
    Wang C; Wang X; Lin C; Zhao XS
    Small; 2019 Oct; 15(42):e1902183. PubMed ID: 31456289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.