These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 37436068)

  • 1. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials.
    Xu Y; Zhang Y; Li C; Ye Z; Bell SEJ
    Acc Chem Res; 2023 Aug; 56(15):2072-2083. PubMed ID: 37436068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining surface-accessible Ag and Au colloidal nanomaterials with SERS for in situ analysis of molecule-metal interactions in complex solution environments.
    Li C; Zhang Y; Ye Z; Bell SEJ; Xu Y
    Nat Protoc; 2023 Sep; 18(9):2717-2744. PubMed ID: 37495750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis.
    Zhang Y; Ye Z; Li C; Chen Q; Aljuhani W; Huang Y; Xu X; Wu C; Bell SEJ; Xu Y
    Nat Commun; 2023 Mar; 14(1):1392. PubMed ID: 36914627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latest Novelties on Plasmonic and Non-Plasmonic Nanomaterials for SERS Sensing.
    Barbillon G
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32575470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.
    Wang AX; Kong X
    Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response.
    Ye Z; Li C; Chen Q; Xu Y; Bell SEJ
    Nanoscale; 2021 Mar; 13(12):5937-5953. PubMed ID: 33650605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols.
    Son J; Kim GH; Lee Y; Lee C; Cha S; Nam JM
    J Am Chem Soc; 2022 Dec; 144(49):22337-22351. PubMed ID: 36473154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization.
    Krajczewski J; Ambroziak R; Kudelski A
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33396325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.
    Dick S; Konrad MP; Lee WW; McCabe H; McCracken JN; Rahman TM; Stewart A; Xu Y; Bell SE
    Adv Mater; 2016 Jul; 28(27):5705-11. PubMed ID: 26822589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic substrates for biochemical applications of surface-enhanced Raman spectroscopy.
    Michałowska A; Kudelski A
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123786. PubMed ID: 38128327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review.
    Serafinelli C; Fantoni A; Alegria ECBA; Vieira M
    Biosensors (Basel); 2022 Apr; 12(4):. PubMed ID: 35448285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.
    Li JF; Zhang YJ; Ding SY; Panneerselvam R; Tian ZQ
    Chem Rev; 2017 Apr; 117(7):5002-5069. PubMed ID: 28271881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the SERS Performance of 3D Substrates through Tunable 3D Plasmonic Coupling toward Label-Free Liver Cancer Cell Classification.
    Han Y; Wu SR; Tian XD; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):28965-28974. PubMed ID: 32380829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material design, development, and trend for surface-enhanced Raman scattering substrates.
    Ying Y; Tang Z; Liu Y
    Nanoscale; 2023 Jul; 15(26):10860-10881. PubMed ID: 37335252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.
    Song J; Huang P; Duan H; Chen X
    Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Supercrystals.
    García-Lojo D; Núñez-Sánchez S; Gómez-Graña S; Grzelczak M; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Acc Chem Res; 2019 Jul; 52(7):1855-1864. PubMed ID: 31243968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering.
    Dos Santos DP; Temperini MLA; Brolo AG
    Acc Chem Res; 2019 Feb; 52(2):456-464. PubMed ID: 30668089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured plasmonic substrates for use as SERS sensors.
    Jeon TY; Kim DJ; Park SG; Kim SH; Kim DH
    Nano Converg; 2016; 3(1):18. PubMed ID: 28191428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reusable Surface-Enhanced Raman Spectroscopy Membranes and Textiles via Template-Assisted Self-Assembly and Micro/Nanoimprinting.
    Garg A; Nam W; Zhou W
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56290-56299. PubMed ID: 33283507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.