These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37436378)
1. Integrated Network Analysis to Determine CNN1, MYL9, TAGLN, and SORBS1 as Potential Key Genes Associated with Prostate Cancer. Li C; Pang L; Jin F; Song Y; Zhou D; Song Y; Li Y; Jin S; Zhang L; Liang W; Shen X; Li J; She B; Wang C; Ma L Clin Lab; 2023 Jul; 69(7):. PubMed ID: 37436378 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive analysis of biomarkers for prostate cancer based on weighted gene co-expression network analysis. Chen X; Wang J; Peng X; Liu K; Zhang C; Zeng X; Lai Y Medicine (Baltimore); 2020 Apr; 99(14):e19628. PubMed ID: 32243390 [TBL] [Abstract][Full Text] [Related]
3. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis. Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947 [TBL] [Abstract][Full Text] [Related]
4. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036 [TBL] [Abstract][Full Text] [Related]
5. Identification of hub genes in thyroid carcinoma to predict prognosis by integrated bioinformatics analysis. Pan Y; Wu L; He S; Wu J; Wang T; Zang H Bioengineered; 2021 Dec; 12(1):2928-2940. PubMed ID: 34167437 [TBL] [Abstract][Full Text] [Related]
6. Identification of hub genes and regulators associated with pancreatic ductal adenocarcinoma based on integrated gene expression profile analysis. Shang M; Zhang L; Chen X; Zheng S Discov Med; 2019 Sep; 28(153):159-172. PubMed ID: 31926587 [TBL] [Abstract][Full Text] [Related]
7. CALD1, CNN1, and TAGLN identified as potential prognostic molecular markers of bladder cancer by bioinformatics analysis. Liu Y; Wu X; Wang G; Hu S; Zhang Y; Zhao S Medicine (Baltimore); 2019 Jan; 98(2):e13847. PubMed ID: 30633156 [TBL] [Abstract][Full Text] [Related]
8. Weighted gene co-expression network analysis identified MYL9 and CNN1 are associated with recurrence in colorectal cancer. Qiu X; Cheng SH; Xu F; Yin JW; Wang LY; Zhang XY J Cancer; 2020; 11(8):2348-2359. PubMed ID: 32127961 [TBL] [Abstract][Full Text] [Related]
9. Screening of hub genes and evaluation of the growth regulatory role of CD44 in metastatic prostate cancer. Lin J; Chen Z; Li Z; Nong D; Li X; Huang G; Hao N; Liang J; Li W Oncol Rep; 2021 Sep; 46(3):. PubMed ID: 34296309 [TBL] [Abstract][Full Text] [Related]
10. Screening and Identification of Key Biomarkers in Inflammatory Breast Cancer Through Integrated Bioinformatic Analyses. Wu J; Lv Q; Huang H; Zhu M; Meng D Genet Test Mol Biomarkers; 2020 Aug; 24(8):484-491. PubMed ID: 32598242 [No Abstract] [Full Text] [Related]
11. Identification of key DNA methylation-driven genes in prostate adenocarcinoma: an integrative analysis of TCGA methylation data. Xu N; Wu YP; Ke ZB; Liang YC; Cai H; Su WT; Tao X; Chen SH; Zheng QS; Wei Y; Xue XY J Transl Med; 2019 Sep; 17(1):311. PubMed ID: 31533842 [TBL] [Abstract][Full Text] [Related]
12. Identification of biomarkers, pathways and potential therapeutic target for docetaxel resistant prostate cancer. Liu RJ; Li SY; Liu LQ; Xu B; Chen M Bioengineered; 2021 Dec; 12(1):2377-2388. PubMed ID: 34077304 [TBL] [Abstract][Full Text] [Related]
13. The Identification of Key Gene Expression Signature in Prostate Cancer. Huang Y; Cao Q; Song Z; Ruan H; Wang K; Chen K; Zhang X Crit Rev Eukaryot Gene Expr; 2020; 30(2):153-168. PubMed ID: 32558494 [TBL] [Abstract][Full Text] [Related]
14. [Bioinformatics-based identification of the key genes associated with prostate cancer]. Zhao HB; Xu GB; Yang WQ; Li XZ; Chen SX; Gan Y; Su ZM; Sheng M; Zeng YR Zhonghua Nan Ke Xue; 2021 Jun; 27(6):489-498. PubMed ID: 34914287 [TBL] [Abstract][Full Text] [Related]
15. In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer. Baruah MM; Sharma N Med Oncol; 2019 Apr; 36(5):43. PubMed ID: 30937635 [TBL] [Abstract][Full Text] [Related]
16. Identification of UBE2C as hub gene in driving prostate cancer by integrated bioinformatics analysis. Wang Y; Wang J; Tang Q; Ren G PLoS One; 2021; 16(2):e0247827. PubMed ID: 33630978 [TBL] [Abstract][Full Text] [Related]
17. Identification of the hub genes associated with prostate cancer tumorigenesis. Zhu H; Lin Q; Gao X; Huang X Front Oncol; 2023; 13():1168772. PubMed ID: 37251946 [TBL] [Abstract][Full Text] [Related]
18. Identification for Exploring Underlying Pathogenesis and Therapy Strategy of Oral Squamous Cell Carcinoma by Bioinformatics Analysis. Xu Z; Jiang P; He S Med Sci Monit; 2019 Dec; 25():9216-9226. PubMed ID: 31794546 [TBL] [Abstract][Full Text] [Related]
19. Identification of prostate cancer hub genes and therapeutic agents using bioinformatics approach. Fang E; Zhang X; Wang Q; Wang D Cancer Biomark; 2017 Dec; 20(4):553-561. PubMed ID: 28800317 [TBL] [Abstract][Full Text] [Related]
20. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer. Yang C; Gong A Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215 [No Abstract] [Full Text] [Related] [Next] [New Search]