These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37436548)
1. Integration of Lysin into Chitosan Nanoparticles for Improving Bacterial Biofilm Inhibition. Liu B; Li Z; Guo Q; Guo X; Liu R; Liu X Appl Biochem Biotechnol; 2024 Mar; 196(3):1592-1611. PubMed ID: 37436548 [TBL] [Abstract][Full Text] [Related]
2. Bactericidal Activity of Usnic Acid-Chitosan Nanoparticles against Persister Cells of Biofilm-Forming Pathogenic Bacteria. Khan F; Yu H; Kim YM Mar Drugs; 2020 May; 18(5):. PubMed ID: 32443816 [TBL] [Abstract][Full Text] [Related]
3. Prediction of key amino acids of Salmonella phage endolysin LysST-3 and detection of its mutants' activity. Liu B; Chang Z; Li Z; Liu R; Liu X Arch Microbiol; 2024 Mar; 206(4):151. PubMed ID: 38467842 [TBL] [Abstract][Full Text] [Related]
5. The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach. Abdelsattar AS; Yakoup AY; Khaled Y; Safwat A; El-Shibiny A Int J Biol Macromol; 2023 Feb; 228():374-384. PubMed ID: 36581028 [TBL] [Abstract][Full Text] [Related]
6. Expression and biological activity of lytic proteins HolST-3 and LysST-3 of Salmonella phage ST-3. Liu B; Lu H; Li Z; Yan P; Liu R; Liu X Microb Pathog; 2022 Aug; 169():105624. PubMed ID: 35697172 [TBL] [Abstract][Full Text] [Related]
7. Photothermally responsive chitosan-coated iron oxide nanoparticles for enhanced eradication of bacterial biofilms. Saravanakumar K; Sathiyaseelan A; Manivasagan P; Jeong MS; Choi M; Jang ES; Priya VV; Wang MH Biomater Adv; 2022 Oct; 141():213129. PubMed ID: 36191538 [TBL] [Abstract][Full Text] [Related]
8. Bacteriophage Endolysin: A Powerful Weapon to Control Bacterial Biofilms. Liu B; Guo Q; Li Z; Guo X; Liu X Protein J; 2023 Oct; 42(5):463-476. PubMed ID: 37490161 [TBL] [Abstract][Full Text] [Related]
9. The effect of gold and silver nanoparticles, chitosan and their combinations on bacterial biofilms of food-borne pathogens. Chlumsky O; Purkrtova S; Michova Turonova H; Svarcova Fuchsova V; Slepicka P; Fajstavr D; Ulbrich P; Demnerova K Biofouling; 2020 Feb; 36(2):222-233. PubMed ID: 32316774 [TBL] [Abstract][Full Text] [Related]
10. Theranostic nanoplatforms of emodin-chitosan with blue laser light on enhancing the anti-biofilm activity of photodynamic therapy against Streptococcus mutans biofilms on the enamel surface. Pourhajibagher M; Keshavarz Valian N; Bahador A BMC Microbiol; 2022 Mar; 22(1):68. PubMed ID: 35246026 [TBL] [Abstract][Full Text] [Related]
11. Enhancing the Thermo-Stability and Anti-Biofilm Activity of Alginate Lyase by Immobilization on Low Molecular Weight Chitosan Nanoparticles. Li S; Wang Y; Li X; Lee BS; Jung S; Lee MS Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540110 [TBL] [Abstract][Full Text] [Related]
12. Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Wu T; Wu C; Fu S; Wang L; Yuan C; Chen S; Hu Y Carbohydr Polym; 2017 Jan; 155():192-200. PubMed ID: 27702504 [TBL] [Abstract][Full Text] [Related]
13. Novel Chimeric Endolysin Conjugated Chitosan Nanocomplex as a Potential Inhibitor Against Gram-Positive and Gram-Negative Bacteria. Abbasi P; Fahimi H; Khaleghi S Appl Biochem Biotechnol; 2024 Jan; 196(1):478-490. PubMed ID: 37140784 [TBL] [Abstract][Full Text] [Related]
14. The potential of suspended chitosan nanoparticles as a surgical irrigation fluid. Holmes MD; Narro AJ; Jones HL; Noble PC; Ambrose CG J Orthop Res; 2024 Jan; 42(1):223-229. PubMed ID: 37448149 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the Thermo-Stability and Anti-Bacterium Activity of Lysozyme by Immobilization on Chitosan Nanoparticles. Wang Y; Li S; Jin M; Han Q; Liu S; Chen X; Han Y Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121010 [TBL] [Abstract][Full Text] [Related]
16. Exploring Endolysin-Loaded Alginate-Chitosan Nanoparticles as Future Remedy for Staphylococcal Infections. Kaur J; Kour A; Panda JJ; Harjai K; Chhibber S AAPS PharmSciTech; 2020 Aug; 21(6):233. PubMed ID: 32794119 [TBL] [Abstract][Full Text] [Related]
17. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Almaaytah A; Mohammed GK; Abualhaijaa A; Al-Balas Q Drug Des Devel Ther; 2017; 11():3159-3170. PubMed ID: 29138537 [TBL] [Abstract][Full Text] [Related]
18. Combination of Rhamnolipid and Chitosan in Nanoparticles Boosts Their Antimicrobial Efficacy. Marangon CA; Martins VCA; Ling MH; Melo CC; Plepis AMG; Meyer RL; Nitschke M ACS Appl Mater Interfaces; 2020 Feb; 12(5):5488-5499. PubMed ID: 31927982 [TBL] [Abstract][Full Text] [Related]
19. Preparation, Characterization, and Zhang Z; Chen J; Zou L; Tang J; Zheng J; Luo M; Wang G; Liang D; Li Y; Chen B; Yan H; Ding W Int J Nanomedicine; 2022; 17():5287-5302. PubMed ID: 36411767 [TBL] [Abstract][Full Text] [Related]
20. Bacteria-responsive biopolymer-coated nanoparticles for biofilm penetration and eradication. Wang Y; Shukla A Biomater Sci; 2022 May; 10(11):2831-2843. PubMed ID: 35441624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]