These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37436564)

  • 1. Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid-Structure Interaction Simulation.
    Fogell NAT; Patel M; Yang P; Ruis RM; Garcia DB; Naser J; Savvopoulos F; Davies Taylor C; Post AL; Pedrigi RM; de Silva R; Krams R
    Ann Biomed Eng; 2023 Sep; 51(9):1950-1964. PubMed ID: 37436564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamics and wall shear metrics in a pulmonary autograft: Comparing a fluid-structure interaction and computational fluid dynamics approach.
    Balasubramanya A; Maes L; Rega F; Mazzi V; Morbiducci U; Famaey N; Degroote J; Segers P
    Comput Biol Med; 2024 Jun; 176():108604. PubMed ID: 38761502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.
    Tang D; Yang C; Kobayashi S; Zheng J; Woodard PK; Teng Z; Billiar K; Bach R; Ku DN
    J Biomech Eng; 2009 Jun; 131(6):061010. PubMed ID: 19449964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.
    Martin DM; Murphy EA; Boyle FJ
    Med Eng Phys; 2014 Aug; 36(8):1047-56. PubMed ID: 24953569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatiotemporal analysis of the left coronary artery biomechanics using fluid-structure interaction models.
    Fandaros M; Li YY; Cao JJ; Yin W
    Med Biol Eng Comput; 2023 Jun; 61(6):1533-1548. PubMed ID: 36790640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of cyclic bending on coronary hemodynamics.
    Wang J; Fang R; Wu H; Xiang Y; Mendieta JB; Paritala PK; Fan Z; Anbananthan H; Amaya Catano JA; Raffel OC; Li Z
    Biomech Model Mechanobiol; 2023 Apr; 22(2):729-738. PubMed ID: 36602717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
    De Wilde D; Trachet B; De Meyer G; Segers P
    J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the necessity of modelling fluid-structure interaction for stented coronary arteries.
    Chiastra C; Migliavacca F; Martínez MÁ; Malvè M
    J Mech Behav Biomed Mater; 2014 Jun; 34():217-30. PubMed ID: 24607760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cardiac motion on right coronary artery hemodynamics.
    Zeng D; Ding Z; Friedman MH; Ethier CR
    Ann Biomed Eng; 2003 Apr; 31(4):420-9. PubMed ID: 12723683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries.
    Rikhtegar F; Knight JA; Olgac U; Saur SC; Poulikakos D; Marshall W; Cattin PC; Alkadhi H; Kurtcuoglu V
    Atherosclerosis; 2012 Apr; 221(2):432-7. PubMed ID: 22317967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coherence tomography-based patient-specific coronary artery reconstruction and fluid-structure interaction simulation.
    Wang J; Paritala PK; Mendieta JB; Komori Y; Raffel OC; Gu Y; Li Z
    Biomech Model Mechanobiol; 2020 Feb; 19(1):7-20. PubMed ID: 31292774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study.
    Torii R; Keegan J; Wood NB; Dowsey AW; Hughes AD; Yang GZ; Firmin DN; Mcg Thom SA; Xu XY
    Br J Radiol; 2009 Jan; 82 Spec No 1():S24-32. PubMed ID: 20348532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions.
    Bahrami S; Norouzi M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1785-1796. PubMed ID: 30027356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries.
    Beier S; Ormiston J; Webster M; Cater J; Norris S; Medrano-Gracia P; Young A; Cowan B
    J Biomech; 2016 Jun; 49(9):1570-1582. PubMed ID: 27062590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study.
    Fan R; Tang D; Yang C; Zheng J; Bach R; Wang L; Muccigrosso D; Billiar K; Zhu J; Ma G; Maehara A; Mintz GS
    Biomed Eng Online; 2014 Mar; 13(1):32. PubMed ID: 24669780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Wall Elasticity on Hemodynamics and Wall Shear Stress in Patient-Specific Simulations in the Coronary Arteries.
    Eslami P; Tran J; Jin Z; Karady J; Sotoodeh R; Lu MT; Hoffmann U; Marsden A
    J Biomech Eng; 2020 Feb; 142(2):0245031-02450310. PubMed ID: 31074768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of experiment approach to identify the dominant geometrical feature of left coronary artery influencing atherosclerosis.
    Ashrafee A; Yashfe SMS; Khan NS; Islam MT; Azam MG; Arafat MT
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38430572
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.