These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37437557)
1. Effect of dual sintering with laser irradiation and thermal treatment on printed copper nanoparticle patterns. Chowdhury R; Young K; Poche TJ; Jang S Nanotechnology; 2023 Aug; 34(42):. PubMed ID: 37437557 [TBL] [Abstract][Full Text] [Related]
2. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. Joo SJ; Park SH; Moon CJ; Kim HS ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508 [TBL] [Abstract][Full Text] [Related]
3. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles. Liu J; Chen H; Ji H; Li M ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145 [TBL] [Abstract][Full Text] [Related]
4. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes. Yu MH; Joo SJ; Kim HS Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291 [TBL] [Abstract][Full Text] [Related]
5. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering. Hwang HJ; Joo SJ; Kim HS ACS Appl Mater Interfaces; 2015 Nov; 7(45):25413-23. PubMed ID: 26505908 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. Kanzaki M; Kawaguchi Y; Kawasaki H ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247 [TBL] [Abstract][Full Text] [Related]
7. Reactive Sintering of Cu Nanoparticles at Ambient Conditions for Printed Electronics. Dai X; Zhang T; Shi H; Zhang Y; Wang T ACS Omega; 2020 Jun; 5(22):13416-13423. PubMed ID: 32548529 [TBL] [Abstract][Full Text] [Related]
8. Epoxy-Based Copper (Cu) Sintering Pastes for Enhanced Bonding Strength and Preventing Cu Oxidation after Sintering. Han SJ; Lee S; Jang KS Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337287 [TBL] [Abstract][Full Text] [Related]
9. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Joo SJ; Hwang HJ; Kim HS Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116 [TBL] [Abstract][Full Text] [Related]
10. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering. Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138 [TBL] [Abstract][Full Text] [Related]
11. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications. Yoon JW; Back JH Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373139 [TBL] [Abstract][Full Text] [Related]
12. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
13. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement. Lee DG; Kim DK; Moon YJ; Moon SJ J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585 [TBL] [Abstract][Full Text] [Related]
14. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics. Hwang YT; Chung WH; Jang YR; Kim HS ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337 [TBL] [Abstract][Full Text] [Related]
15. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications. Kwon J; Cho H; Eom H; Lee H; Suh YD; Moon H; Shin J; Hong S; Ko SH ACS Appl Mater Interfaces; 2016 May; 8(18):11575-82. PubMed ID: 27128365 [TBL] [Abstract][Full Text] [Related]
16. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink. Lee DG; Kim DK; Moon YJ; Moon SJ Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285 [TBL] [Abstract][Full Text] [Related]
17. Copper laser patterning on a flexible substrate using a cost-effective 3D printer. Chakraborty S; Park HY; Ahn SI Sci Rep; 2022 Dec; 12(1):21149. PubMed ID: 36477714 [TBL] [Abstract][Full Text] [Related]
18. High frequency characteristics of printed Cu conductive circuit. Kim JW; Lee YC; Kim KS; Jung SB J Nanosci Nanotechnol; 2011 Jan; 11(1):537-40. PubMed ID: 21446492 [TBL] [Abstract][Full Text] [Related]
19. Laser sintering of copper nanoparticles on top of silicon substrates. Soltani A; Khorramdel Vahed B; Mardoukhi A; Mäntysalo M Nanotechnology; 2016 Jan; 27(3):035203. PubMed ID: 26650565 [TBL] [Abstract][Full Text] [Related]
20. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics. Hwang HJ; Chung WH; Kim HS Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]