BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37437557)

  • 1. Effect of dual sintering with laser irradiation and thermal treatment on printed copper nanoparticle patterns.
    Chowdhury R; Young K; Poche TJ; Jang S
    Nanotechnology; 2023 Aug; 34(42):. PubMed ID: 37437557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique.
    Joo SJ; Park SH; Moon CJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.
    Hwang HJ; Joo SJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25413-23. PubMed ID: 26505908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Sintering of Cu Nanoparticles at Ambient Conditions for Printed Electronics.
    Dai X; Zhang T; Shi H; Zhang Y; Wang T
    ACS Omega; 2020 Jun; 5(22):13416-13423. PubMed ID: 32548529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epoxy-Based Copper (Cu) Sintering Pastes for Enhanced Bonding Strength and Preventing Cu Oxidation after Sintering.
    Han SJ; Lee S; Jang KS
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering.
    Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R
    Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications.
    Yoon JW; Back JH
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.
    Hwang YT; Chung WH; Jang YR; Kim HS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications.
    Kwon J; Cho H; Eom H; Lee H; Suh YD; Moon H; Shin J; Hong S; Ko SH
    ACS Appl Mater Interfaces; 2016 May; 8(18):11575-82. PubMed ID: 27128365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper laser patterning on a flexible substrate using a cost-effective 3D printer.
    Chakraborty S; Park HY; Ahn SI
    Sci Rep; 2022 Dec; 12(1):21149. PubMed ID: 36477714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High frequency characteristics of printed Cu conductive circuit.
    Kim JW; Lee YC; Kim KS; Jung SB
    J Nanosci Nanotechnol; 2011 Jan; 11(1):537-40. PubMed ID: 21446492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser sintering of copper nanoparticles on top of silicon substrates.
    Soltani A; Khorramdel Vahed B; Mardoukhi A; Mäntysalo M
    Nanotechnology; 2016 Jan; 27(3):035203. PubMed ID: 26650565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics.
    Hwang HJ; Chung WH; Kim HS
    Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.