These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37437672)
1. Exposure to ZnO nanoparticles induced blood-milk barrier dysfunction by disrupting tight junctions and cell injury. Wang J; Jiang M; Wan G; Fu Y; Ye Y; Wu H; Chen Y; Chen Y; Sun Y; Wang X; Zhou E; Yang Z Toxicol Lett; 2023 Aug; 384():63-72. PubMed ID: 37437672 [TBL] [Abstract][Full Text] [Related]
2. Dual effects of JNK activation in blood-milk barrier damage induced by zinc oxide nanoparticles. Wu J; Lai X; Cui G; Chen Q; Liu J; Kang Y; Zhang Y; Feng X; Hu C; Shao L J Hazard Mater; 2020 Nov; 399():122809. PubMed ID: 32937690 [TBL] [Abstract][Full Text] [Related]
3. Zinc oxide nanoparticles disrupt the mammary epithelial barrier via Z-DNA binding protein 1-triggered PANoptosis. Zhu Z; Zhang Y; Wang R; Dong Y; Wu J; Shao L Ecotoxicol Environ Saf; 2024 Sep; 283():116777. PubMed ID: 39053182 [TBL] [Abstract][Full Text] [Related]
4. ZnO NPs induce miR-342-5p mediated ferroptosis of spermatocytes through the NF-κB pathway in mice. Liu G; Lv J; Wang Y; Sun K; Gao H; Li Y; Yao Q; Ma L; Kochshugulova G; Jiang Z J Nanobiotechnology; 2024 Jul; 22(1):390. PubMed ID: 38961442 [TBL] [Abstract][Full Text] [Related]
5. Phytoestrogens Weaken the Blood-Milk Barrier in Lactating Mammary Epithelial Cells by Affecting Tight Junctions and Cell Viability. Tsugami Y; Matsunaga K; Suzuki T; Nishimura T; Kobayashi K J Agric Food Chem; 2017 Dec; 65(50):11118-11124. PubMed ID: 29189005 [TBL] [Abstract][Full Text] [Related]
6. Continuous ZnO nanoparticle exposure induces melanoma-like skin lesions in epidermal barrier dysfunction model mice through anti-apoptotic effects mediated by the oxidative stress-activated NF-κB pathway. Wang P; Hu G; Zhao W; Du J; You M; Xv M; Yang H; Zhang M; Yan F; Huang M; Wang X; Zhang L; Chen Y J Nanobiotechnology; 2022 Mar; 20(1):111. PubMed ID: 35248056 [TBL] [Abstract][Full Text] [Related]
7. Postnatal distribution of ZnO nanoparticles to the breast milk through oral route and their risk assessment for breastfed rat offsprings. Hussain A; Kumar S; Kaul G Hum Exp Toxicol; 2020 Oct; 39(10):1318-1332. PubMed ID: 32347117 [TBL] [Abstract][Full Text] [Related]
8. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae. Babele PK; Thakre PK; Kumawat R; Tomar RS Chemosphere; 2018 Dec; 213():65-75. PubMed ID: 30212720 [TBL] [Abstract][Full Text] [Related]
9. Zinc oxide nanoparticles exposure-induced oxidative stress restricts cranial neural crest development during chicken embryogenesis. Yan Y; Wang G; Huang J; Zhang Y; Cheng X; Chuai M; Brand-Saberi B; Chen G; Jiang X; Yang X Ecotoxicol Environ Saf; 2020 May; 194():110415. PubMed ID: 32151871 [TBL] [Abstract][Full Text] [Related]
10. Induction of size-dependent breakdown of blood-milk barrier in lactating mice by TiO2 nanoparticles. Zhang C; Zhai S; Wu L; Bai Y; Jia J; Zhang Y; Zhang B; Yan B PLoS One; 2015; 10(4):e0122591. PubMed ID: 25849145 [TBL] [Abstract][Full Text] [Related]
11. Short communication: Differential loss of bovine mammary epithelial barrier integrity in response to lipopolysaccharide and lipoteichoic acid. Wellnitz O; Zbinden C; Huang X; Bruckmaier RM J Dairy Sci; 2016 Jun; 99(6):4851-4856. PubMed ID: 27060811 [TBL] [Abstract][Full Text] [Related]
12. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions. Kobayashi K; Oyama S; Numata A; Rahman MM; Kumura H PLoS One; 2013; 8(4):e62187. PubMed ID: 23626786 [TBL] [Abstract][Full Text] [Related]
13. Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Hu C; Song J; Li Y; Luan Z; Zhu K Br J Nutr; 2013 Aug; 110(4):681-8. PubMed ID: 23308387 [TBL] [Abstract][Full Text] [Related]
14. The toxicology of ion-shedding zinc oxide nanoparticles. Liu J; Feng X; Wei L; Chen L; Song B; Shao L Crit Rev Toxicol; 2016; 46(4):348-84. PubMed ID: 26963861 [TBL] [Abstract][Full Text] [Related]
15. Protein and lipid homeostasis altered in rat macrophages after exposure to metallic oxide nanoparticles. Doumandji Z; Safar R; Lovera-Leroux M; Nahle S; Cassidy H; Matallanas D; Rihn B; Ferrari L; Joubert O Cell Biol Toxicol; 2020 Feb; 36(1):65-82. PubMed ID: 31352547 [TBL] [Abstract][Full Text] [Related]
16. Luteolin/ZnO nanoparticles attenuate neuroinflammation associated with diabetes via regulating MicroRNA-124 by targeting C/EBPA. Moustafa EM; Moawed FSM; Elmaghraby DF Environ Toxicol; 2023 Nov; 38(11):2691-2704. PubMed ID: 37483155 [TBL] [Abstract][Full Text] [Related]
17. Toxic effects of TiO Yao L; Chen L; Chen B; Tang Y; Zhao Y; Liu S; Xu H Ecotoxicol Environ Saf; 2021 Jan; 208():111762. PubMed ID: 33396082 [TBL] [Abstract][Full Text] [Related]
18. Gold Nanoparticles Increase Endothelial Paracellular Permeability by Altering Components of Endothelial Tight Junctions, and Increase Blood-Brain Barrier Permeability in Mice. Li CH; Shyu MK; Jhan C; Cheng YW; Tsai CH; Liu CW; Lee CC; Chen RM; Kang JJ Toxicol Sci; 2015 Nov; 148(1):192-203. PubMed ID: 26272951 [TBL] [Abstract][Full Text] [Related]