These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 37437815)
21. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Frandsen KEH; Tovborg M; Jørgensen CI; Spodsberg N; Rosso MN; Hemsworth GR; Garman EF; Grime GW; Poulsen JN; Batth TS; Miyauchi S; Lipzen A; Daum C; Grigoriev IV; Johansen KS; Henrissat B; Berrin JG; Lo Leggio L J Biol Chem; 2019 Nov; 294(45):17117-17130. PubMed ID: 31471321 [TBL] [Abstract][Full Text] [Related]
22. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown. Monclaro AV; Filho EXF Int J Biol Macromol; 2017 Sep; 102():771-778. PubMed ID: 28450248 [TBL] [Abstract][Full Text] [Related]
23. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose. Calderaro F; Bevers LE; van den Berg MA Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439765 [TBL] [Abstract][Full Text] [Related]
24. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan. Jagadeeswaran G; Gainey L; Prade R; Mort AJ Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737 [TBL] [Abstract][Full Text] [Related]
25. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass. Müller G; Kalyani DC; Horn SJ Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285 [TBL] [Abstract][Full Text] [Related]
26. Lytic polysaccharide monooxygenase (LPMO)-derived saccharification of lignocellulosic biomass. Moon M; Lee JP; Park GW; Lee JS; Park HJ; Min K Bioresour Technol; 2022 Sep; 359():127501. PubMed ID: 35753567 [TBL] [Abstract][Full Text] [Related]
28. Current insights of factors interfering the stability of lytic polysaccharide monooxygenases. Dan M; Zheng Y; Zhao G; Hsieh YSY; Wang D Biotechnol Adv; 2023 Oct; 67():108216. PubMed ID: 37473820 [TBL] [Abstract][Full Text] [Related]
31. Insights into the H Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864 [TBL] [Abstract][Full Text] [Related]
33. Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation. Johansen KS Trends Plant Sci; 2016 Nov; 21(11):926-936. PubMed ID: 27527668 [TBL] [Abstract][Full Text] [Related]
34. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase. Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433 [TBL] [Abstract][Full Text] [Related]
36. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122 [TBL] [Abstract][Full Text] [Related]