BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37437865)

  • 21. CRISPR based therapeutics: a new paradigm in cancer precision medicine.
    Das S; Bano S; Kapse P; Kundu GC
    Mol Cancer; 2022 Mar; 21(1):85. PubMed ID: 35337340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies.
    Newsom S; Parameshwaran HP; Martin L; Rajan R
    Front Cell Infect Microbiol; 2020; 10():619763. PubMed ID: 33585286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-delivery particles targeting nuclear receptor-interacting protein 1 (
    Shen Y; Cohen JL; Nicoloro SM; Kelly M; Yenilmez B; Henriques F; Tsagkaraki E; Edwards YJK; Hu X; Friedline RH; Kim JK; Czech MP
    J Biol Chem; 2018 Nov; 293(44):17291-17305. PubMed ID: 30190322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Breast Cancer Transcriptional Regulatory Network Reprogramming by using the CRISPR/Cas9 System: An Oncogenetics Perspective.
    Singh DD; Verma R; Tripathi SK; Sahu R; Trivedi P; Yadav DK
    Curr Top Med Chem; 2021; 21(31):2800-2813. PubMed ID: 34477520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas systems: Challenges and future prospects.
    Gohil N; Bhattacharjee G; Lam NL; Perli SD; Singh V
    Prog Mol Biol Transl Sci; 2021; 180():141-151. PubMed ID: 33934835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human Papillomavirus Oncogene Manipulation Using Clustered Regularly Interspersed Short Palindromic Repeats/Cas9 Delivered by pH-Sensitive Cationic Liposomes.
    Zhen S; Liu Y; Lu J; Tuo X; Yang X; Chen H; Chen W; Li X
    Hum Gene Ther; 2020 Mar; 31(5-6):309-324. PubMed ID: 31973584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research.
    Pandey PK; Quilichini TD; Vaid N; Gao P; Xiang D; Datla R
    Semin Cell Dev Biol; 2019 Dec; 96():107-114. PubMed ID: 31022459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease.
    Baker C; Hayden MS
    F1000Res; 2020; 9():281. PubMed ID: 32528662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inducible localized delivery of an anti-PD-1 scFv enhances anti-tumor activity of ROR1 CAR-T cells in TNBC.
    Harrasser M; Gohil SH; Lau H; Della Peruta M; Muczynski V; Patel D; Miranda E; Grigoriadis K; Grigoriadis A; Granger D; Evans R; Nathwani AC
    Breast Cancer Res; 2022 Jun; 24(1):39. PubMed ID: 35659040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy.
    Ghaffari S; Khalili N; Rezaei N
    J Exp Clin Cancer Res; 2021 Aug; 40(1):269. PubMed ID: 34446084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges.
    Hussen BM; Rasul MF; Abdullah SR; Hidayat HJ; Faraj GSH; Ali FA; Salihi A; Baniahmad A; Ghafouri-Fard S; Rahman M; Glassy MC; Branicki W; Taheri M
    Mil Med Res; 2023 Jul; 10(1):32. PubMed ID: 37460924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for the CRISPR-Based Therapeutics.
    Li B; Niu Y; Ji W; Dong Y
    Trends Pharmacol Sci; 2020 Jan; 41(1):55-65. PubMed ID: 31862124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review.
    Costa RLB; Han HS; Gradishar WJ
    Breast Cancer Res Treat; 2018 Jun; 169(3):397-406. PubMed ID: 29417298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing.
    Çerçi B; Uzay IA; Kara MK; Dinçer P
    Life Sci; 2023 Jan; 312():121204. PubMed ID: 36403643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BCL6 and the Notch pathway: a signaling axis leading to a novel druggable biotarget in triple negative breast cancer.
    De Santis F; Romero-Cordoba SL; Castagnoli L; Volpari T; Faraci S; Fucà G; Tagliabue E; De Braud F; Pupa SM; Di Nicola M
    Cell Oncol (Dordr); 2022 Apr; 45(2):257-274. PubMed ID: 35357654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy.
    Song X; Liu C; Wang N; Huang H; He S; Gong C; Wei Y
    Adv Drug Deliv Rev; 2021 Jan; 168():158-180. PubMed ID: 32360576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The CRISPR-Cas toolbox and gene editing technologies.
    Liu G; Lin Q; Jin S; Gao C
    Mol Cell; 2022 Jan; 82(2):333-347. PubMed ID: 34968414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies.
    Hu KJ; Yin ETS; Hu YX; Huang H
    Curr Med Sci; 2021 Jun; 41(3):420-430. PubMed ID: 34218353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics.
    Tiwari PK; Ko TH; Dubey R; Chouhan M; Tsai LW; Singh HN; Chaubey KK; Dayal D; Chiang CW; Kumar S
    Front Mol Biosci; 2023; 10():1214489. PubMed ID: 37469704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.