These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 37438118)
41. Systemic levels of metallic ions released from orthodontic mini-implants. de Morais LS; Serra GG; Albuquerque Palermo EF; Andrade LR; Müller CA; Meyers MA; Elias CN Am J Orthod Dentofacial Orthop; 2009 Apr; 135(4):522-9. PubMed ID: 19361740 [TBL] [Abstract][Full Text] [Related]
42. Osseointegration of Ti-6Al-4V alloy implants with a titanium nitride coating produced by a PIRAC nitriding technique: a long-term time course study in the rat. Sovak G; Gotman I; Weiss A Microsc Microanal; 2015 Feb; 21(1):179-89. PubMed ID: 25482093 [TBL] [Abstract][Full Text] [Related]
43. Histomorphologic and histomophometric evaluation of immediately and early loaded mini-implants for orthodontic anchorage. Freire JN; Silva NR; Gil JN; Magini RS; Coelho PG Am J Orthod Dentofacial Orthop; 2007 Jun; 131(6):704.e1-9. PubMed ID: 17561041 [TBL] [Abstract][Full Text] [Related]
44. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications. Elias KL; Daehn GS; Brantley WA; McGlumphy EA J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918 [TBL] [Abstract][Full Text] [Related]
45. Ti-5Al-5Mo-5V-3Cr bone implants with dual-scale topography: a promising alternative to Ti-6Al-4V. Micheletti C; Lee BEJ; Deering J; Binkley DM; Coulson S; Hussanain A; Zurob H; Grandfield K Nanotechnology; 2020 Mar; 31(23):235101. PubMed ID: 32097900 [TBL] [Abstract][Full Text] [Related]
46. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation. Yamada M; Ueno T; Minamikawa H; Ikeda T; Nakagawa K; Ogawa T Clin Oral Implants Res; 2013 Sep; 24(9):991-1001. PubMed ID: 22726210 [TBL] [Abstract][Full Text] [Related]
47. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching. Faverani LP; Assunção WG; de Carvalho PS; Yuan JC; Sukotjo C; Mathew MT; Barao VA PLoS One; 2014; 9(3):e93377. PubMed ID: 24671257 [TBL] [Abstract][Full Text] [Related]
48. Surface morphology of nanotube formed Ti alloy by electrochemical methods. Kim SH; Choe HC J Nanosci Nanotechnol; 2014 Nov; 14(11):8372-6. PubMed ID: 25958530 [TBL] [Abstract][Full Text] [Related]
49. The effect of surface treatments on the fretting behavior of Ti-6Al-4V alloy. Dalmiglio M; Schaaff P; Holzwarth U; Chiesa R; Rondelli G J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):407-16. PubMed ID: 18161779 [TBL] [Abstract][Full Text] [Related]
50. Ultrastructural differences of the interface zone between bone and Ti 6Al 4V or commercially pure titanium. Johansson C; Lausmaa J; Ask M; Hansson HA; Albrektsson T J Biomed Eng; 1989 Jan; 11(1):3-8. PubMed ID: 2927096 [TBL] [Abstract][Full Text] [Related]
51. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces. Colombo JS; Carley A; Fleming GJ; Crean SJ; Sloan AJ; Waddington RJ Int J Oral Maxillofac Implants; 2012; 27(5):1029-42. PubMed ID: 23057015 [TBL] [Abstract][Full Text] [Related]
52. Zhang M; Pu X; Chen X; Yin G Heliyon; 2019 Nov; 5(11):e02824. PubMed ID: 31763479 [TBL] [Abstract][Full Text] [Related]
53. Histological and scanning electron microscopy investigation of the effects of titanium surface modifications on osseointegration in rabbits. Aydın B; Öztemür Z; Yeldir N; Kılınç S; Aktı S; Bilgin İ Acta Orthop Traumatol Turc; 2024 Aug; 58(4):215-222. PubMed ID: 39320261 [TBL] [Abstract][Full Text] [Related]
54. Osseointegration of additive manufacturing Ti-6Al-4V and Co-Cr-Mo alloys, with and without surface functionalization with hydroxyapatite and type I collagen. Brogini S; Sartori M; Giavaresi G; Cremascoli P; Alemani F; Bellini D; Martini L; Maglio M; Pagani S; Fini M J Mech Behav Biomed Mater; 2021 Mar; 115():104262. PubMed ID: 33321396 [TBL] [Abstract][Full Text] [Related]
55. DMP1 and IFITM5 Regulate Osteogenic Differentiation of MC3T3-E1 on PEO-Treated Ti-6Al-4V-Ca Jeong SH; Nguyen KT; Nguyen MT; You JS; Kim BH; Choe HC; Ahn SG ACS Biomater Sci Eng; 2023 Mar; 9(3):1377-1390. PubMed ID: 36802481 [TBL] [Abstract][Full Text] [Related]
56. [Superplastic forming of titanium alloy denture base]. Okuno O; Nakano T; Hamanaka H; Miura I; Ito M; Ai M; Okada M Shika Zairyo Kikai; 1989 Mar; 8(2):129-36. PubMed ID: 2603084 [TBL] [Abstract][Full Text] [Related]
57. Tribological Properties of Groove-Textured Ti-6Al-4V Alloys with Solid Lubricants in Dry Sliding against GCr15 Steel Balls. Wu Z; Tan X; Li G; Xing Y Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004835 [TBL] [Abstract][Full Text] [Related]
58. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. Filova E; Fojt J; Kryslova M; Moravec H; Joska L; Bacakova L Int J Nanomedicine; 2015; 10():7145-63. PubMed ID: 26648719 [TBL] [Abstract][Full Text] [Related]
59. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation. Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729 [TBL] [Abstract][Full Text] [Related]