These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37438350)

  • 1. Molecular system for an exponentially fast growing programmable synthetic polymer.
    Dabby N; Barr A; Chen HL
    Sci Rep; 2023 Jul; 13(1):11295. PubMed ID: 37438350
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Raza MT; Park SH
    ACS Omega; 2023 May; 8(17):15041-15051. PubMed ID: 37151505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanical Turing machine: blueprint for a biomolecular computer.
    Shapiro E
    Interface Focus; 2012 Aug; 2(4):497-503. PubMed ID: 22649583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing exponentially faster: implementing a non-deterministic universal Turing machine using DNA.
    Currin A; Korovin K; Ababi M; Roper K; Kell DB; Day PJ; King RD
    J R Soc Interface; 2017 Mar; 14(128):. PubMed ID: 28250099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting the simulation of quantum Turing machines by quantum circuits.
    Molina A; Watrous J
    Proc Math Phys Eng Sci; 2019 Jun; 475(2226):20180767. PubMed ID: 31293355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D Assembly Experiments.
    Winfree E
    J Biomol Struct Dyn; 2000; 17 Suppl 1():263-70. PubMed ID: 22607433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a theory of evolutionary computation.
    Eberbach E
    Biosystems; 2005 Oct; 82(1):1-19. PubMed ID: 16102892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Chemistry Computes: Language Recognition by Non-Biochemical Chemical Automata. From Finite Automata to Turing Machines.
    Dueñas-Díez M; Pérez-Mercader J
    iScience; 2019 Sep; 19():514-526. PubMed ID: 31442667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An RNA-based theory of natural universal computation.
    Akhlaghpour H
    J Theor Biol; 2022 Mar; 537():110984. PubMed ID: 34979104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turing, von Neumann, and the computational architecture of biological machines.
    Al-Hashimi HM
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2220022120. PubMed ID: 37307461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable and autonomous computing machine made of biomolecules.
    Benenson Y; Paz-Elizur T; Adar R; Keinan E; Livneh Z; Shapiro E
    Nature; 2001 Nov; 414(6862):430-4. PubMed ID: 11719800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation beyond the turing limit.
    Siegelmann HT
    Science; 1995 Apr; 268(5210):545-8. PubMed ID: 17756722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The computational power of interactive recurrent neural networks.
    Cabessa J; Siegelmann HT
    Neural Comput; 2012 Apr; 24(4):996-1019. PubMed ID: 22295978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Odd Parity Checker Prototype Using DNAzyme Finite State Machine.
    Eshra A; El-Sayed A
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):316-24. PubMed ID: 26355779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling growth kinetics and statistical distribution of oligometastases.
    Withers HR; Lee SP
    Semin Radiat Oncol; 2006 Apr; 16(2):111-9. PubMed ID: 16564446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turing-Hopf patterns on growing domains: The torus and the sphere.
    Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P
    J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed enzymatic activation of 1-D DNA tiles.
    Garg S; Chandran H; Gopalkrishnan N; LaBean TH; Reif J
    ACS Nano; 2015 Feb; 9(2):1072-9. PubMed ID: 25625898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Polymerization-like Kinetics for Programmable Self-Assembly of DNA-Encoded Nanoparticles with Limited Valence.
    Gu M; Ma X; Zhang L; Lin J
    J Am Chem Soc; 2019 Oct; 141(41):16408-16415. PubMed ID: 31553167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular nanomachines: physical principles and implementation strategies.
    Drexler KE
    Annu Rev Biophys Biomol Struct; 1994; 23():377-405. PubMed ID: 7919787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.