These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 37438363)

  • 1. A model for organization and regulation of nuclear condensates by gene activity.
    Schede HH; Natarajan P; Chakraborty AK; Shrinivas K
    Nat Commun; 2023 Jul; 14(1):4152. PubMed ID: 37438363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially non-uniform condensates emerge from dynamically arrested phase separation.
    Erkamp NA; Sneideris T; Ausserwöger H; Qian D; Qamar S; Nixon-Abell J; St George-Hyslop P; Schmit JD; Weitz DA; Knowles TPJ
    Nat Commun; 2023 Feb; 14(1):684. PubMed ID: 36755024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying viscosity and surface tension of multicomponent protein-nucleic acid condensates.
    Alshareedah I; Thurston GM; Banerjee PR
    Biophys J; 2021 Apr; 120(7):1161-1169. PubMed ID: 33453268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size distributions of intracellular condensates reflect competition between coalescence and nucleation.
    Lee DSW; Choi CH; Sanders DW; Beckers L; Riback JA; Brangwynne CP; Wingreen NS
    Nat Phys; 2023; 19(4):586-596. PubMed ID: 37073403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Condensation in the Nuclear Receptor Family; Implications for Transcriptional Output.
    Appelman MD; Hollaar EE; Schuijers J; van Mil SWC
    Adv Exp Med Biol; 2022; 1390():243-253. PubMed ID: 36107323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of condensate material properties and chromatin heterogeneity governs nuclear condensate ripening.
    Banerjee DS; Chigumira T; Lackner RM; Kratz JC; Chenoweth DM; Banerjee S; Zhang H
    bioRxiv; 2024 Aug; ():. PubMed ID: 38766065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-distance association of topological boundaries through nuclear condensates.
    Gamliel A; Meluzzi D; Oh S; Jiang N; Destici E; Rosenfeld MG; Nair SJ
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2206216119. PubMed ID: 35914133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression.
    Li W; Jiang H
    J Mol Biol; 2022 Jan; 434(1):167151. PubMed ID: 34271007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly of Biomolecular Condensates with Shared Components.
    Jacobs WM
    Phys Rev Lett; 2021 Jun; 126(25):258101. PubMed ID: 34241502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecular Condensates in the Nucleus.
    Sabari BR; Dall'Agnese A; Young RA
    Trends Biochem Sci; 2020 Nov; 45(11):961-977. PubMed ID: 32684431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation.
    Tatavosian R; Kent S; Brown K; Yao T; Duc HN; Huynh TN; Zhen CY; Ma B; Wang H; Ren X
    J Biol Chem; 2019 Feb; 294(5):1451-1463. PubMed ID: 30514760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the multicomponent phase separation through molecular dynamics simulation and graph theory.
    Yan ZS; Ma YQ; Ding HM
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38349628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA at the surface of phase-separated condensates impacts their size and number.
    Cochard A; Garcia-Jove Navarro M; Piroska L; Kashida S; Kress M; Weil D; Gueroui Z
    Biophys J; 2022 May; 121(9):1675-1690. PubMed ID: 35364105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. It's Just a Phase: Exploring the Relationship Between mRNA, Biomolecular Condensates, and Translational Control.
    Parker DM; Winkenbach LP; Osborne Nishimura E
    Front Genet; 2022; 13():931220. PubMed ID: 35832192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SGF29 nuclear condensates reinforce cellular aging.
    Yan K; Ji Q; Zhao D; Li M; Sun X; Wang Z; Liu X; Liu Z; Li H; Ding Y; Wang S; Belmonte JCI; Qu J; Zhang W; Liu GH
    Cell Discov; 2023 Nov; 9(1):110. PubMed ID: 37935676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the Physico-Chemical Composition of Biomolecular Condensates from Spatially-Resolved NMR.
    Pantoja CF; Ibáñez de Opakua A; Cima-Omori MS; Zweckstetter M
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202218078. PubMed ID: 36847235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.