These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 37438363)

  • 21. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing Inhomogeneous Diffusion in the Microenvironments of Phase-Separated Polymers under Confinement.
    Shayegan M; Tahvildari R; Metera K; Kisley L; Michnick SW; Leslie SR
    J Am Chem Soc; 2019 May; 141(19):7751-7757. PubMed ID: 31017394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. May the force be with you: Nuclear condensates function beyond transcription control: Potential nongenetic functions of nuclear condensates in physiological and pathological conditions.
    Negri ML; D'Annunzio S; Vitali G; Zippo A
    Bioessays; 2023 Oct; 45(10):e2300075. PubMed ID: 37530178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Growth Rate of DNA Condensate Droplets Increases with the Size of Participating Subunits.
    Agarwal S; Osmanovic D; Klocke MA; Franco E
    ACS Nano; 2022 Aug; 16(8):11842-11851. PubMed ID: 35867936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates.
    Guan M; Garabedian MV; Leutenegger M; Schuster BS; Good MC; Hammer DA
    Biochemistry; 2021 Oct; 60(42):3137-3151. PubMed ID: 34648259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics.
    Yeong V; Werth EG; Brown LM; Obermeyer AC
    ACS Cent Sci; 2020 Dec; 6(12):2301-2310. PubMed ID: 33376791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase separation in transcription factor dynamics and chromatin organization.
    Wagh K; Garcia DA; Upadhyaya A
    Curr Opin Struct Biol; 2021 Dec; 71():148-155. PubMed ID: 34303933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomolecular Condensates and Gene Activation in Development and Disease.
    Sabari BR
    Dev Cell; 2020 Oct; 55(1):84-96. PubMed ID: 33049213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nucleation landscape of biomolecular condensates.
    Shimobayashi SF; Ronceray P; Sanders DW; Haataja MP; Brangwynne CP
    Nature; 2021 Nov; 599(7885):503-506. PubMed ID: 34552246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation-dependent regulation of messenger RNA transcription, processing and translation within biomolecular condensates.
    Nosella ML; Forman-Kay JD
    Curr Opin Cell Biol; 2021 Apr; 69():30-40. PubMed ID: 33450720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates.
    Hochmair J; Exner C; Franck M; Dominguez-Baquero A; Diez L; Brognaro H; Kraushar ML; Mielke T; Radbruch H; Kaniyappan S; Falke S; Mandelkow E; Betzel C; Wegmann S
    EMBO J; 2022 Jun; 41(11):e108882. PubMed ID: 35298090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative theory for the diffusive dynamics of liquid condensates.
    Hubatsch L; Jawerth LM; Love C; Bauermann J; Tang TD; Bo S; Hyman AA; Weber CA
    Elife; 2021 Oct; 10():. PubMed ID: 34636323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase Separation-Mediated Chromatin Organization and Dynamics: From Imaging-Based Quantitative Characterizations to Functional Implications.
    Ng WS; Sielaff H; Zhao ZW
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wetting and complex remodeling of membranes by biomolecular condensates.
    Mangiarotti A; Chen N; Zhao Z; Lipowsky R; Dimova R
    Nat Commun; 2023 May; 14(1):2809. PubMed ID: 37217523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Function and Regulation of Phase-Separated Biological Condensates.
    Li XH; Chavali PL; Pancsa R; Chavali S; Babu MM
    Biochemistry; 2018 May; 57(17):2452-2461. PubMed ID: 29392932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavior control of membrane-less protein liquid condensates with metal ion-induced phase separation.
    Hong K; Song D; Jung Y
    Nat Commun; 2020 Nov; 11(1):5554. PubMed ID: 33144560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation.
    Snead WT; Gladfelter AS
    Mol Cell; 2019 Oct; 76(2):295-305. PubMed ID: 31604601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bose-Einstein condensation into nonequilibrium States studied by condensate focusing.
    Shvarchuck I; Buggle Ch; Petrov DS; Dieckmann K; Zielonkowski M; Kemmann M; Tiecke TG; von Klitzing W; Shlyapnikov GV; Walraven JT
    Phys Rev Lett; 2002 Dec; 89(27):270404. PubMed ID: 12513188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancer Features that Drive Formation of Transcriptional Condensates.
    Shrinivas K; Sabari BR; Coffey EL; Klein IA; Boija A; Zamudio AV; Schuijers J; Hannett NM; Sharp PA; Young RA; Chakraborty AK
    Mol Cell; 2019 Aug; 75(3):549-561.e7. PubMed ID: 31398323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.