These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37438392)

  • 1. Identification and analysis of ship waiting behavior outside the port based on AIS data.
    Ma J; Zhou Y; Zhu Z
    Sci Rep; 2023 Jul; 13(1):11267. PubMed ID: 37438392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of emission characteristics associated with vessel activities states in port waters.
    Gao X; Dai W; Yu Q
    Mar Pollut Bull; 2024 May; 202():116329. PubMed ID: 38581735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the impact of COVID-19 on ship visiting behaviors to ports- A framework and a case study.
    Wang X; Liu Z; Yan R; Wang H; Zhang M
    Ocean Coast Manag; 2022 Nov; 230():106377. PubMed ID: 36212805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AIS-based operational phase identification using Progressive Ablation Feature Selection with machine learning for improving ship emission estimates.
    Duan K; Li Q; Liu S; Liu Y; Wang S; Li S; Wang X; Ma N; Ma Y
    J Air Waste Manag Assoc; 2024 Feb; 74(2):100-115. PubMed ID: 38215336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ship Classification and Anomaly Detection Based on Spaceborne AIS Data Considering Behavior Characteristics.
    Yan Z; Song X; Zhong H; Yang L; Wang Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of the COVID-19 epidemic on merchant ship activity and pollution emissions in Shanghai port waters.
    Shi K; Weng J
    Sci Total Environ; 2021 Oct; 790():148198. PubMed ID: 34098281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Vessels' Air Pollutant Emissions Inventory and Emission Characteristics in the Xiamen Emission Control Area].
    Wang J; Huang Z; Liu YY; Chen SY; Wu YC; He YY; Yang XY
    Huan Jing Ke Xue; 2020 Aug; 41(8):3572-3580. PubMed ID: 33124330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. North Pacific and Arctic marine traffic dataset (2015-2020).
    Kapsar K; Sullender B; Liu J; Poe A
    Data Brief; 2022 Oct; 44():108531. PubMed ID: 36060822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China.
    Li C; Yuan Z; Ou J; Fan X; Ye S; Xiao T; Shi Y; Huang Z; Ng SKW; Zhong Z; Zheng J
    Sci Total Environ; 2016 Dec; 573():1-10. PubMed ID: 27543686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting Global Shipping Networks from Massive Historical Automatic Identification System Sensor Data: A Bottom-Up Approach.
    Wang Z; Claramunt C; Wang Y
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating greenhouse gas emissions from ships on four ports of Georgia from 2010 to 2018.
    Tokuslu A
    Environ Monit Assess; 2021 Jun; 193(7):385. PubMed ID: 34091785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Underwater radiated noise from modern commercial ships.
    McKenna MF; Ross D; Wiggins SM; Hildebrand JA
    J Acoust Soc Am; 2012 Jan; 131(1):92-103. PubMed ID: 22280574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for detecting abnormal behavior of ships based on multi-dimensional density distance and an abnormal isolation mechanism.
    Zhang L; Zhu Y; Ren J; Lu W; Yao Y
    Math Biosci Eng; 2023 Jun; 20(8):13921-13946. PubMed ID: 37679117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity-based methodology to assess ship emissions - A review.
    Nunes RAO; Alvim-Ferraz MCM; Martins FG; Sousa SIV
    Environ Pollut; 2017 Dec; 231(Pt 1):87-103. PubMed ID: 28793241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Big data-driven carbon emission traceability list and characteristics of ships in maritime transportation-a case study of Tianjin Port.
    Wang P; Hu Q; Xie W; Wu L; Wang F; Mei Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):71103-71119. PubMed ID: 37160512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing emissions of atmospheric pollutants along major dry bulk and tanker routes through autonomous shipping.
    Liu J; Law AW; Duru O
    J Environ Manage; 2022 Jan; 302(Pt B):114080. PubMed ID: 34773781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An AIS-based emission inventory and the impact on air quality in Tianjin port based on localized emission factors.
    Yang L; Zhang Q; Zhang Y; Lv Z; Wang Y; Wu L; Feng X; Mao H
    Sci Total Environ; 2021 Aug; 783():146869. PubMed ID: 33865124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China.
    Zhao J; Zhang Y; Patton AP; Ma W; Kan H; Wu L; Fung F; Wang S; Ding D; Walker K
    Environ Pollut; 2020 Aug; 263(Pt A):114643. PubMed ID: 33618465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of shipping emissions on four ports of Portugal.
    Nunes RAO; Alvim-Ferraz MCM; Martins FG; Sousa SIV
    Environ Pollut; 2017 Dec; 231(Pt 2):1370-1379. PubMed ID: 28917818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loitering behavior detection by spatiotemporal characteristics quantification based on the dynamic features of Automatic Identification System (AIS) messages.
    Wijaya WM; Nakamura Y
    PeerJ Comput Sci; 2023; 9():e1572. PubMed ID: 37810347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.