These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37438494)

  • 1. Prediction and detection of virtual reality induced cybersickness: a spiking neural network approach using spatiotemporal EEG brain data and heart rate variability.
    Yang AHX; Kasabov NK; Cakmak YO
    Brain Inform; 2023 Jul; 10(1):15. PubMed ID: 37438494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning methods for the study of cybersickness: a systematic review.
    Yang AHX; Kasabov N; Cakmak YO
    Brain Inform; 2022 Oct; 9(1):24. PubMed ID: 36209445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine-Deep-Ensemble Learning Model for Classifying Cybersickness Caused by Virtual Reality Immersion.
    Oh S; Kim DK
    Cyberpsychol Behav Soc Netw; 2021 Nov; 24(11):729-736. PubMed ID: 34375142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing Cybersickness in 360-Degree Virtual Reality.
    Arshad I; De Mello P; Ender M; McEwen JD; Ferré ER
    Multisens Res; 2021 Dec; ():1-17. PubMed ID: 34936982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain activity during cybersickness: a scoping review.
    Chang E; Billinghurst M; Yoo B
    Virtual Real; 2023 Apr; ():1-25. PubMed ID: 37360812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of full immersive virtual reality video game on balance and cybersickness of healthy adolescents.
    Oh H; Lee G
    Neurosci Lett; 2021 Aug; 760():136063. PubMed ID: 34174345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.
    Kasabov NK
    Neural Netw; 2014 Apr; 52():62-76. PubMed ID: 24508754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating objective (EEG) and subjective (SSQ) cybersickness in people with susceptibility to motion sickness.
    Jang KM; Kwon M; Nam SG; Kim D; Lim HK
    Appl Ergon; 2022 Jul; 102():103731. PubMed ID: 35248910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal Biosensing for Vestibular Network-Based Cybersickness Detection.
    Li G; McGill M; Brewster S; Chen CP; Anguera JA; Gazzaley A; Pollick F
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2469-2480. PubMed ID: 34882567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anxiety Partially Mediates Cybersickness Symptoms in Immersive Virtual Reality Environments.
    Pot-Kolder R; Veling W; Counotte J; van der Gaag M
    Cyberpsychol Behav Soc Netw; 2018 Mar; 21(3):187-193. PubMed ID: 29356575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a placebo tDCS treatment on cybersickness and EEG-neurofeedback success.
    Berger LM; Wood G; Kober SE
    Behav Brain Res; 2024 May; 465():114917. PubMed ID: 38401602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying the Effect of Display Type and Viewing Perspective on User Experience in Virtual Reality Exergames.
    Xu W; Liang HN; Zhang Z; Baghaei N
    Games Health J; 2020 Dec; 9(6):405-414. PubMed ID: 32074463
    [No Abstract]   [Full Text] [Related]  

  • 13. Cybersickness: a Multisensory Integration Perspective.
    Gallagher M; Ferrè ER
    Multisens Res; 2018 Jan; 31(7):645-674. PubMed ID: 31264611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Normal Aging and Multisensory Data Fusion on Cybersickness and Postural Adaptation in Immersive Virtual Reality.
    Séba MP; Maillot P; Hanneton S; Dietrich G
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments.
    Sevinc V; Berkman MI
    Appl Ergon; 2020 Jan; 82():102958. PubMed ID: 31563798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cybersickness and Its Severity Arising from Virtual Reality Content: A Comprehensive Study.
    Oh H; Son W
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating Cybersickness in Virtual Reality Systems through Foveated Depth-of-Field Blur.
    Hussain R; Chessa M; Solari F
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Emotional and Immersive Outcomes in the Context of Virtual Reality Scene Interactions.
    Daşdemir Y
    Diagnostics (Basel); 2023 Nov; 13(22):. PubMed ID: 37998573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments.
    Garcia-Agundez A; Reuter C; Becker H; Konrad R; Caserman P; Miede A; Göbel S
    Games Health J; 2019 Dec; 8(6):439-444. PubMed ID: 31295007
    [No Abstract]   [Full Text] [Related]  

  • 20. Focusing on cybersickness: pervasiveness, latent trajectories, susceptibility, and effects on the virtual reality experience.
    Garrido LE; Frías-Hiciano M; Moreno-Jiménez M; Cruz GN; García-Batista ZE; Guerra-Peña K; Medrano LA
    Virtual Real; 2022; 26(4):1347-1371. PubMed ID: 35250349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.