These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37438608)
1. Application of hybrid improved temporal convolution network model in time series prediction of river water quality. Hu Y; Lyu L; Wang N; Zhou X; Fang M Sci Rep; 2023 Jul; 13(1):11260. PubMed ID: 37438608 [TBL] [Abstract][Full Text] [Related]
2. Electricity price forecast based on the STL-TCN-NBEATS model. Zhang B; Song C; Jiang X; Li Y Heliyon; 2023 Jan; 9(1):e13029. PubMed ID: 36820190 [TBL] [Abstract][Full Text] [Related]
3. An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods. Zheng Y; Wei J; Zhang W; Zhang Y; Zhang T; Zhou Y J Environ Manage; 2024 Aug; 366():121932. PubMed ID: 39043087 [TBL] [Abstract][Full Text] [Related]
4. A multi-step water quality prediction model based on the Savitzky-Golay filter and Transformer optimized network. Wang R; Qi Y; Zhang Q; Wen F Environ Sci Pollut Res Int; 2023 Oct; 30(50):109299-109314. PubMed ID: 37770739 [TBL] [Abstract][Full Text] [Related]
5. Prediction of air pollutant concentrations based on TCN-BiLSTM-DMAttention with STL decomposition. Li W; Jiang X Sci Rep; 2023 Mar; 13(1):4665. PubMed ID: 36949097 [TBL] [Abstract][Full Text] [Related]
6. Water quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang River, China. Li L; Jiang P; Xu H; Lin G; Guo D; Wu H Environ Sci Pollut Res Int; 2019 Jul; 26(19):19879-19896. PubMed ID: 31093910 [TBL] [Abstract][Full Text] [Related]
7. Stepwise decomposition-integration-prediction framework for runoff forecasting considering boundary correction. Xu Z; Mo L; Zhou J; Fang W; Qin H Sci Total Environ; 2022 Dec; 851(Pt 2):158342. PubMed ID: 36037902 [TBL] [Abstract][Full Text] [Related]
8. A New Time Series Forecasting Model Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Temporal Convolutional Network. Guo C; Kang X; Xiong J; Wu J Neural Process Lett; 2022 Oct; ():1-21. PubMed ID: 36248248 [TBL] [Abstract][Full Text] [Related]
9. Prediction of soil moisture using BiGRU-LSTM model with STL decomposition in Qinghai-Tibet Plateau. Zhao L; Luo T; Jiang X; Zhang B PeerJ; 2023; 11():e15851. PubMed ID: 37637158 [TBL] [Abstract][Full Text] [Related]
10. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Song C; Yao L; Hua C; Ni Q Environ Monit Assess; 2021 May; 193(6):363. PubMed ID: 34041601 [TBL] [Abstract][Full Text] [Related]
11. [Water Quality Prediction Model for the Pearl River Estuary Based on BiLSTM Improved with Attention Mechanism]. Chen ZF; Li XF Huan Jing Ke Xue; 2024 Jun; 45(6):3205-3213. PubMed ID: 38897744 [TBL] [Abstract][Full Text] [Related]
12. A novel deep learning ensemble model based on two-stage feature selection and intelligent optimization for water quality prediction. Liu W; Liu T; Liu Z; Luo H; Pei H Environ Res; 2023 May; 224():115560. PubMed ID: 36842699 [TBL] [Abstract][Full Text] [Related]
13. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology. Hou Y; Zhang A; Lv R; Zhao S; Ma J; Zhang H; Li Z Environ Sci Pollut Res Int; 2022 Sep; 29(42):63640-63654. PubMed ID: 35460477 [TBL] [Abstract][Full Text] [Related]
14. An improved graph convolutional network with feature and temporal attention for multivariate water quality prediction. Ni Q; Cao X; Tan C; Peng W; Kang X Environ Sci Pollut Res Int; 2023 Jan; 30(5):11516-11529. PubMed ID: 36094707 [TBL] [Abstract][Full Text] [Related]
15. Exploring a multi-output temporal convolutional network driven encoder-decoder framework for ammonia nitrogen forecasting. Sheng S; Lin K; Zhou Y; Chen H; Luo Y; Guo S; Xu CY J Environ Manage; 2023 Sep; 342():118232. PubMed ID: 37270980 [TBL] [Abstract][Full Text] [Related]
16. A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting. Wang M; Qin F Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920477 [TBL] [Abstract][Full Text] [Related]
17. LSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network. Li W; Wei Y; An D; Jiao Y; Wei Q Environ Sci Pollut Res Int; 2022 Jun; 29(26):39545-39556. PubMed ID: 35103942 [TBL] [Abstract][Full Text] [Related]
18. Remote sensing image analysis and prediction based on improved Pix2Pix model for water environment protection of smart cities. Wang L; Li W; Wang X; Xu J PeerJ Comput Sci; 2023; 9():e1292. PubMed ID: 37346622 [TBL] [Abstract][Full Text] [Related]
19. Application of improved seasonal GM(1,1) model based on HP filter for runoff prediction in Xiangjiang River. Zhang X; Wu X; Xiao Y; Shi J; Zhao Y; Zhang M Environ Sci Pollut Res Int; 2022 Jul; 29(35):52806-52817. PubMed ID: 35274203 [TBL] [Abstract][Full Text] [Related]
20. What will the water quality of the Yangtze River be in the future? Dong W; Zhang Y; Zhang L; Ma W; Luo L Sci Total Environ; 2023 Jan; 857(Pt 3):159714. PubMed ID: 36302434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]