BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37438781)

  • 1. Kinetic characterization of annotated glycolytic enzymes present in cellulose-fermenting Clostridium thermocellum suggests different metabolic roles.
    Daley SR; Gallanosa PM; Sparling R
    Biotechnol Biofuels Bioprod; 2023 Jul; 16(1):112. PubMed ID: 37438781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase.
    Koendjbiharie JG; Hon S; Pabst M; Hooftman R; Stevenson DM; Cui J; Amador-Noguez D; Lynd LR; Olson DG; van Kranenburg R
    J Biol Chem; 2020 Feb; 295(7):1867-1878. PubMed ID: 31871051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Analysis of H
    Kuil T; Hon S; Yayo J; Foster C; Ravagnan G; Maranas CD; Lynd LR; Olson DG; van Maris AJA
    Appl Environ Microbiol; 2022 Feb; 88(4):e0185721. PubMed ID: 34936842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrophosphate as allosteric regulator of ATP-phosphofructokinase in Clostridium thermocellum and other bacteria with ATP- and PP
    Kuil T; Nurminen CMK; van Maris AJA
    Arch Biochem Biophys; 2023 Jul; 743():109676. PubMed ID: 37380119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing the Thermodynamic Driving Force of the Phosphofructokinase Reaction in
    Hon S; Jacobson T; Stevenson DM; Maloney MI; Giannone RJ; Hettich RL; Amador-Noguez D; Olson DG; Lynd LR
    Appl Environ Microbiol; 2022 Nov; 88(22):e0125822. PubMed ID: 36286488
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Jacobson TB; Korosh TK; Stevenson DM; Foster C; Maranas C; Olson DG; Lynd LR; Amador-Noguez D
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32184362
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Holwerda EK; Zhou J; Hon S; Stevenson DM; Amador-Noguez D; Lynd LR; van Dijken JP
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978139
    [No Abstract]   [Full Text] [Related]  

  • 8. Atypical glycolysis in Clostridium thermocellum.
    Zhou J; Olson DG; Argyros DA; Deng Y; van Gulik WM; van Dijken JP; Lynd LR
    Appl Environ Microbiol; 2013 May; 79(9):3000-8. PubMed ID: 23435896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis.
    Schroeder WL; Kuil T; van Maris AJA; Olson DG; Lynd LR; Maranas CD
    Metab Eng; 2023 May; 77():306-322. PubMed ID: 37085141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory Evolution and Reverse Engineering of
    Yayo J; Kuil T; Olson DG; Lynd LR; Holwerda EK; van Maris AJA
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum.
    Dash S; Olson DG; Joshua Chan SH; Amador-Noguez D; Lynd LR; Maranas CD
    Metab Eng; 2019 Sep; 55():161-169. PubMed ID: 31220663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.
    Taillefer M; Rydzak T; Levin DB; Oresnik IJ; Sparling R
    Appl Environ Microbiol; 2015 Apr; 81(7):2423-32. PubMed ID: 25616802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of pyrophosphate- and ATP-dependent phosphofructokinases from banana fruit.
    Turner WL; Plaxton WC
    Planta; 2003 May; 217(1):113-21. PubMed ID: 12721855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biochemical properties and phylogenies of phosphofructokinases from extremophiles.
    Ronimus RS; Morgan HW
    Extremophiles; 2001 Dec; 5(6):357-73. PubMed ID: 11778837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of Monosaccharides by
    Ha-Tran DM; Nguyen TTM; Lo SC; Huang CC
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361881
    [No Abstract]   [Full Text] [Related]  

  • 17. Integrated omics analyses reveal the details of metabolic adaptation of
    Poudel S; Giannone RJ; Rodriguez M; Raman B; Martin MZ; Engle NL; Mielenz JR; Nookaew I; Brown SD; Tschaplinski TJ; Ussery D; Hettich RL
    Biotechnol Biofuels; 2017; 10():14. PubMed ID: 28077967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M
    Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production.
    Roberts SB; Gowen CM; Brooks JP; Fong SS
    BMC Syst Biol; 2010 Mar; 4():31. PubMed ID: 20307315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae.
    Mensonides FI; Bakker BM; Cremazy F; Messiha HL; Mendes P; Boogerd FC; Westerhoff HV
    FEBS Lett; 2013 Sep; 587(17):2860-7. PubMed ID: 23856461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.