These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37439122)

  • 41. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes.
    Jeon B; Lee C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmonic photocatalysis applied to solar fuels.
    Bardey S; Bonduelle-Skrzypczak A; Fécant A; Cui Z; Colbeau-Justin C; Caps V; Keller V
    Faraday Discuss; 2019 May; 214(0):417-439. PubMed ID: 30839019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater.
    Nazir A; Huo P; Wang H; Weiqiang Z; Wan Y
    J Mater Sci; 2023; 58(15):6474-6515. PubMed ID: 37065680
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication of Z-Type TiN@(A,R)TiO
    Wang W; Wu Y; Chen L; Xu C; Liu C; Li C
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Understanding the Behaviors of Plasmon-Induced Hot Carriers and Their Applications in Photocatalysis.
    Yang JL; Wang HJ; Qi X; Zheng QN; Tian JH; Zhang H; Li JF
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12149-12160. PubMed ID: 38412551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facilitating Hot Electron Injection from Graphene to Semiconductor by Rectifying Contact for Vis-NIR-Driven H
    Hu WY; Li QY; Zhai GY; Lin YX; Li D; He XX; Lin X; Xu D; Sun LH; Zhang SN; Chen JS; Li XH
    Small; 2022 May; 18(19):e2200885. PubMed ID: 35396794
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances and mechanism of plasmonic metal-semiconductor photocatalysis.
    Kong T; Liao A; Xu Y; Qiao X; Zhang H; Zhang L; Zhang C
    RSC Adv; 2024 May; 14(24):17041-17050. PubMed ID: 38808242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Schottky barrier effect on plasmon-induced charge transfer.
    Wang X; Gao S; Ma J
    Nanoscale; 2023 Jan; 15(4):1754-1762. PubMed ID: 36598756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic effect of double Schottky potential well and oxygen vacancy for enhanced plasmonic photocatalytic U(VI) reduction.
    Liu X; Bi RX; Peng ZH; Lei L; Zhang CR; Luo QX; Liang RP; Qiu JD
    J Hazard Mater; 2023 Aug; 455():131581. PubMed ID: 37167874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface.
    Lian Z; Sakamoto M; Matsunaga H; Vequizo JJM; Yamakata A; Haruta M; Kurata H; Ota W; Sato T; Teranishi T
    Nat Commun; 2018 Jun; 9(1):2314. PubMed ID: 29899329
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlling Hot Charge Carrier Transfer in Monolithic AlSiAl Heterostructures for Plasmonic On-Chip Energy Harvesting.
    Song Z; Sistani M; Schwingshandl F; Lugstein A
    Small; 2023 Sep; 19(36):e2301055. PubMed ID: 37162487
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.
    Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W
    Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects.
    Luo S; Ren X; Lin H; Song H; Ye J
    Chem Sci; 2021 Mar; 12(16):5701-5719. PubMed ID: 34168800
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding the roles of plasmonic Au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C
    Guo Y; Jia H; Yang J; Yin H; Yang Z; Wang J; Yang B
    Phys Chem Chem Phys; 2018 Aug; 20(34):22296-22307. PubMed ID: 30124712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light.
    Xiao Q; Jaatinen E; Zhu H
    Chem Asian J; 2014 Nov; 9(11):3046-64. PubMed ID: 25048419
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis.
    Zhou L; Swearer DF; Zhang C; Robatjazi H; Zhao H; Henderson L; Dong L; Christopher P; Carter EA; Nordlander P; Halas NJ
    Science; 2018 Oct; 362(6410):69-72. PubMed ID: 30287657
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmon-driven water splitting enhancement on plasmonic metal-insulator-semiconductor hetero-nanostructures: unraveling the crucial role of interfacial engineering.
    Li C; Wang P; Li H; Wang M; Zhang J; Qi G; Jin Y
    Nanoscale; 2018 Aug; 10(29):14290-14297. PubMed ID: 30015344
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facilely Fabricated Zero-Bias Silicon-Based Plasmonic Photodetector in the Near-Infrared Region with a Schottky Barrier Properly Controlled by Nanoalloys.
    Okamoto S; Kusada K; Nomura Y; Takeda E; Inada Y; Hisada K; Anada S; Yamamoto K; Hirasawa T; Kitagawa H
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8984-8992. PubMed ID: 38326087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.