BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 3743914)

  • 21. Cochlear micromechanics--a physical model of transduction.
    Allen JB
    J Acoust Soc Am; 1980 Dec; 68(6):1660-70. PubMed ID: 7462465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model of the generation of the cochlear microphonic with nonlinear hair cell transduction and nonlinear basilar membrane mechanics.
    Patuzzi RB
    Hear Res; 1987; 30(1):73-82. PubMed ID: 3680056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tectorial membrane: a possible effect on frequency analysis in the cochlea.
    Zwislocki JJ; Kletsky EJ
    Science; 1979 May; 204(4393):639-41. PubMed ID: 432671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency discrimination in the mammalian cochlea: theory versus experiment.
    Holmes MH
    J Acoust Soc Am; 1987 Jan; 81(1):103-14. PubMed ID: 3819167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model of cochlear mechanics with outer hair cell motility.
    Neely ST
    J Acoust Soc Am; 1993 Jul; 94(1):137-46. PubMed ID: 8354757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An active process in cochlear mechanics.
    Davis H
    Hear Res; 1983 Jan; 9(1):79-90. PubMed ID: 6826470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reflections on the role of a traveling wave along the basilar membrane in view of clinical and experimental findings.
    Sohmer H
    Eur Arch Otorhinolaryngol; 2015 Mar; 272(3):531-5. PubMed ID: 24740735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basilar membrane tuning properties in the specialised cochlea of the CF-bat, Rhinolophus ferrumequinum.
    Wilson JP; Bruns V
    Hear Res; 1983 Apr; 10(1):15-35. PubMed ID: 6841277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A micromechanical contribution to cochlear tuning and tonotopic organization.
    Holton T; Hudspeth AJ
    Science; 1983 Nov; 222(4623):508-10. PubMed ID: 6623089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophysiological Evidence of the Basilar-Membrane Travelling Wave and Frequency Place Coding of Sound in Cochlear Implant Recipients.
    Campbell L; Bester C; Iseli C; Sly D; Dragovic A; Gummer AW; O'Leary S
    Audiol Neurootol; 2017; 22(3):180-189. PubMed ID: 29084395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dead regions and pitch perception.
    Huss M; Moore BC
    J Acoust Soc Am; 2005 Jun; 117(6):3841-52. PubMed ID: 16018486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dimensions of the cochlear stereocilia in man and the guinea pig.
    Wright A
    Hear Res; 1984 Jan; 13(1):89-98. PubMed ID: 6706866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some current concepts of cochlear mechanics.
    Zwislocki JJ
    Audiology; 1983; 22(6):517-29. PubMed ID: 6667173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Outer hair cell active force generation in the cochlear environment.
    Liao Z; Feng S; Popel AS; Brownell WE; Spector AA
    J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active control of waves in a cochlear model with subpartitions.
    Chadwick RS; Dimitriadis EK; Iwasa KH
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2564-9. PubMed ID: 8637914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.