These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 37439223)
1. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling. George AL; Sidgwick FR; Watt JE; Martin MP; Trost M; Marín-Rubio JL; Dueñas ME J Proteome Res; 2023 Aug; 22(8):2629-2640. PubMed ID: 37439223 [TBL] [Abstract][Full Text] [Related]
2. Improved drug target deconvolution with PISA-DIA using an extended, overlapping temperature gradient. Emery-Corbin SJ; Yousef JM; Adhikari S; Sumardy F; Nhu D; van Delft MF; Lessene G; Dziekan J; Webb AI; Dagley LF Proteomics; 2024 Aug; 24(16):e2300644. PubMed ID: 38766901 [TBL] [Abstract][Full Text] [Related]
3. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904 [TBL] [Abstract][Full Text] [Related]
4. Mass defect-based carbonyl activated tags (mdCATs) for multiplex data-independent acquisition proteome quantification. Zhang S; Di Y; Yao J; Wang Y; Shu H; Yan G; Zhang L; Lu H Chem Commun (Camb); 2021 Jan; 57(6):737-740. PubMed ID: 33496701 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155 [TBL] [Abstract][Full Text] [Related]
7. A Versatile Isobaric Tag Enables Proteome Quantification in Data-Dependent and Data-Independent Acquisition Modes. Tian X; de Vries MP; Permentier HP; Bischoff R Anal Chem; 2020 Dec; 92(24):16149-16157. PubMed ID: 33256395 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data. Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709 [TBL] [Abstract][Full Text] [Related]
9. Boosting Detection of Low-Abundance Proteins in Thermal Proteome Profiling Experiments by Addition of an Isobaric Trigger Channel to TMT Multiplexes. Peck Justice SA; McCracken NA; Victorino JF; Qi GD; Wijeratne AB; Mosley AL Anal Chem; 2021 May; 93(18):7000-7010. PubMed ID: 33908254 [TBL] [Abstract][Full Text] [Related]
10. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
11. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation. Lou R; Liu W; Li R; Li S; He X; Shui W Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227 [TBL] [Abstract][Full Text] [Related]
12. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries. Van Puyvelde B; Willems S; Gabriels R; Daled S; De Clerck L; Vande Casteele S; Staes A; Impens F; Deforce D; Martens L; Degroeve S; Dhaenens M Proteomics; 2020 Feb; 20(3-4):e1900306. PubMed ID: 31981311 [TBL] [Abstract][Full Text] [Related]
13. Mass Defect-Based DiLeu Tagging for Multiplexed Data-Independent Acquisition. Zhong X; Frost DC; Yu Q; Li M; Gu TJ; Li L Anal Chem; 2020 Aug; 92(16):11119-11126. PubMed ID: 32649829 [TBL] [Abstract][Full Text] [Related]
14. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries. Pino LK; Just SC; MacCoss MJ; Searle BC Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Protein Quantification in a Complex Background by DIA and TMT Workflows with Fixed Instrument Time. Muntel J; Kirkpatrick J; Bruderer R; Huang T; Vitek O; Ori A; Reiter L J Proteome Res; 2019 Mar; 18(3):1340-1351. PubMed ID: 30726097 [TBL] [Abstract][Full Text] [Related]
17. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry. Zhang F; Ge W; Huang L; Li D; Liu L; Dong Z; Xu L; Ding X; Zhang C; Sun Y; A J; Gao J; Guo T Mol Cell Proteomics; 2023 Sep; 22(9):100623. PubMed ID: 37481071 [TBL] [Abstract][Full Text] [Related]
18. DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics. Haynes SE; Majmudar JD; Martin BR Anal Chem; 2018 Aug; 90(15):8722-8726. PubMed ID: 29989796 [TBL] [Abstract][Full Text] [Related]
19. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359 [TBL] [Abstract][Full Text] [Related]
20. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry. Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]