These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37439496)
1. Identifying Differences in the Performance of Machine Learning Models for Off-Targets Trained on Publicly Available and Proprietary Data Sets. Smajić A; Rami I; Sosnin S; Ecker GF Chem Res Toxicol; 2023 Aug; 36(8):1300-1312. PubMed ID: 37439496 [TBL] [Abstract][Full Text] [Related]
2. Multioutput Perturbation-Theory Machine Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds. Vásquez-Domínguez E; Armijos-Jaramillo VD; Tejera E; González-Díaz H Mol Pharm; 2019 Oct; 16(10):4200-4212. PubMed ID: 31426639 [TBL] [Abstract][Full Text] [Related]
3. Comparison of logP and logD correction models trained with public and proprietary data sets. Aliagas I; Gobbi A; Lee ML; Sellers BD J Comput Aided Mol Des; 2022 Mar; 36(3):253-262. PubMed ID: 35359246 [TBL] [Abstract][Full Text] [Related]
4. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
5. Survival prediction models: an introduction to discrete-time modeling. Suresh K; Severn C; Ghosh D BMC Med Res Methodol; 2022 Jul; 22(1):207. PubMed ID: 35883032 [TBL] [Abstract][Full Text] [Related]
6. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery. Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717 [TBL] [Abstract][Full Text] [Related]
7. Machine learning methods, databases and tools for drug combination prediction. Wu L; Wen Y; Leng D; Zhang Q; Dai C; Wang Z; Liu Z; Yan B; Zhang Y; Wang J; He S; Bo X Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34477201 [TBL] [Abstract][Full Text] [Related]
8. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics. Ferreira da Costa J; Silva D; Caamaño O; Brea JM; Loza MI; Munteanu CR; Pazos A; García-Mera X; González-Díaz H ACS Chem Neurosci; 2018 Nov; 9(11):2572-2587. PubMed ID: 29791132 [TBL] [Abstract][Full Text] [Related]
9. Studying and mitigating the effects of data drifts on ML model performance at the example of chemical toxicity data. Morger A; Garcia de Lomana M; Norinder U; Svensson F; Kirchmair J; Mathea M; Volkamer A Sci Rep; 2022 May; 12(1):7244. PubMed ID: 35508546 [TBL] [Abstract][Full Text] [Related]
10. Industry-scale application and evaluation of deep learning for drug target prediction. Sturm N; Mayr A; Le Van T; Chupakhin V; Ceulemans H; Wegner J; Golib-Dzib JF; Jeliazkova N; Vandriessche Y; Böhm S; Cima V; Martinovic J; Greene N; Vander Aa T; Ashby TJ; Hochreiter S; Engkvist O; Klambauer G; Chen H J Cheminform; 2020 Apr; 12(1):26. PubMed ID: 33430964 [TBL] [Abstract][Full Text] [Related]
11. Chemistry-Based Modeling on Phenotype-Based Drug-Induced Liver Injury Annotation: From Public to Proprietary Data. Moein M; Heinonen M; Mesens N; Chamanza R; Amuzie C; Will Y; Ceulemans H; Kaski S; Herman D Chem Res Toxicol; 2023 Aug; 36(8):1238-1247. PubMed ID: 37556769 [TBL] [Abstract][Full Text] [Related]
12. Trade-off Predictivity and Explainability for Machine-Learning Powered Predictive Toxicology: An in-Depth Investigation with Tox21 Data Sets. Wu L; Huang R; Tetko IV; Xia Z; Xu J; Tong W Chem Res Toxicol; 2021 Feb; 34(2):541-549. PubMed ID: 33513003 [TBL] [Abstract][Full Text] [Related]
13. Systematic Evaluation of Local and Global Machine Learning Models for the Prediction of ADME Properties. Di Lascio E; Gerebtzoff G; Rodríguez-Pérez R Mol Pharm; 2023 Mar; 20(3):1758-1767. PubMed ID: 36745394 [TBL] [Abstract][Full Text] [Related]
14. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion. Nath A; Subbiah K Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483 [TBL] [Abstract][Full Text] [Related]
15. Explaining Predictive Model Performance: An Experimental Study of Data Preparation and Model Choice. Ahady Dolatsara H; Chen YJ; Leonard RD; Megahed FM; Jones-Farmer LA Big Data; 2023 Jun; 11(3):199-214. PubMed ID: 34612727 [TBL] [Abstract][Full Text] [Related]
16. STarFish: A Stacked Ensemble Target Fishing Approach and its Application to Natural Products. Cockroft NT; Cheng X; Fuchs JR J Chem Inf Model; 2019 Nov; 59(11):4906-4920. PubMed ID: 31589422 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents. Wani MA; Roy KK Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578 [TBL] [Abstract][Full Text] [Related]
18. PTML Model of ChEMBL Compounds Assays for Vitamin Derivatives. Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva Caracuel E; González-Díaz H ACS Comb Sci; 2020 Mar; 22(3):129-141. PubMed ID: 32011854 [TBL] [Abstract][Full Text] [Related]
19. A Consensus Compound/Bioactivity Dataset for Data-Driven Drug Design and Chemogenomics. Isigkeit L; Chaikuad A; Merk D Molecules; 2022 Apr; 27(8):. PubMed ID: 35458710 [TBL] [Abstract][Full Text] [Related]