These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37439503)

  • 21. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion.
    Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L
    Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness.
    Wang J; Qiao J; Wang J; Zhu Y; Jiang L
    ACS Appl Mater Interfaces; 2015 May; 7(17):9281-6. PubMed ID: 25867752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tendon-Inspired Anisotropic Hydrogels with Excellent Mechanical Properties for Strain Sensors.
    Lin H; Wang R; Xu S; Li X; Song S
    Langmuir; 2023 May; 39(17):6069-6077. PubMed ID: 37079920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triple-Mechanism Enhanced Flexible SiO
    Ma Y; Gong J; Li Q; Liu X; Qiao C; Zhang J; Zhang S; Li Z
    Small; 2024 Jun; 20(25):e2310046. PubMed ID: 38183373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing.
    Fan L; Xie J; Zheng Y; Wei D; Yao D; Zhang J; Zhang T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22225-22236. PubMed ID: 32315157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chitosan derivative-based double network hydrogels with high strength, high fracture toughness and tunable mechanics.
    Gan S; Xu B; Zhang X; Zhao J; Rong J
    Int J Biol Macromol; 2019 Sep; 137():495-503. PubMed ID: 31276722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy.
    Lu J; Hu O; Hou L; Ye D; Weng S; Jiang X
    Int J Biol Macromol; 2022 Nov; 221():1002-1011. PubMed ID: 36113584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels.
    Gan S; Bai S; Chen C; Zou Y; Sun Y; Zhao J; Rong J
    Int J Biol Macromol; 2021 Jun; 181():418-425. PubMed ID: 33781814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tough Engineering Hydrogels Based on Swelling-Freeze-Thaw Method for Artificial Cartilage.
    Hao M; Wang Y; Li L; Liu Y; Bai Y; Zhou W; Lu Q; Sun F; Li L; Feng S; Wei W; Zhang T
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25093-25103. PubMed ID: 35606333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-Printed Hydrogels with High-Strength and Anisotropy Mediated by Chain Rigidity.
    Kong D; Li Y; Yang B; Pang Y; Yuan H; Du C; Tan Y
    Small; 2024 Jul; ():e2403052. PubMed ID: 38970551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A universal post-treatment strategy for biomimetic composite hydrogel with anisotropic topological structure and wide range of adjustable mechanical properties.
    Zhang X; Wang Y; Wu X; Zhu F; Qin YX; Chen W; Zheng Q
    Biomater Adv; 2022 Feb; 133():112654. PubMed ID: 35067432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair.
    Gan S; Lin W; Zou Y; Xu B; Zhang X; Zhao J; Rong J
    Carbohydr Polym; 2020 Feb; 229():115523. PubMed ID: 31826442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies.
    Wood AT; Everett D; Budhwani KI; Dickinson B; Thomas V
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():308-16. PubMed ID: 27040224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile preparation and characterization of super tough chitosan/poly(vinyl alcohol) hydrogel with low temperature resistance and anti-swelling property.
    Xiang X; Chen G; Chen K; Jiang X; Hou L
    Int J Biol Macromol; 2020 Jan; 142():574-582. PubMed ID: 31739027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free-form three-dimensional nanocellulose structure reinforced with poly(vinyl alcohol) using freeze-thaw process.
    Kim J; Choi J; Hyun J
    Carbohydr Polym; 2022 Dec; 298():120055. PubMed ID: 36241314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Biomimetic "Salting Out-Alignment-Locking" Tactic to Design Strong and Tough Hydrogel.
    Sun X; Mao Y; Yu Z; Yang P; Jiang F
    Adv Mater; 2024 Jun; 36(25):e2400084. PubMed ID: 38517475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel high-strength photoluminescent hydrogel for tissue engineering.
    Zhi H; Fei X; Tian J; Zhao L; Zhang H; Jing M; Xu L; Wang Y; Li Y
    Biomater Sci; 2018 Aug; 6(9):2320-2326. PubMed ID: 30067267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability.
    Hu K; He P; Zhao Z; Huang L; Liu K; Lin S; Zhang M; Wu H; Chen L; Ni Y
    Carbohydr Polym; 2021 Jul; 264():117995. PubMed ID: 33910731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters.
    Yuan N; Xu L; Zhang L; Ye H; Zhao J; Liu Z; Rong J
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():221-230. PubMed ID: 27287117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels.
    Shao C; Meng L; Wang M; Cui C; Wang B; Han CR; Xu F; Yang J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5885-5895. PubMed ID: 30652853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.