These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37439638)

  • 21. Automating identification of avian vocalizations using time-frequency information extracted from the Gabor transform.
    Connor EF; Li S; Li S
    J Acoust Soc Am; 2012 Jul; 132(1):507-17. PubMed ID: 22779497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species.
    Ludeña-Choez J; Quispe-Soncco R; Gallardo-Antolín A
    PLoS One; 2017; 12(6):e0179403. PubMed ID: 28628630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Empirical refinements applicable to the recording of fish sounds in small tanks.
    Akamatsu T; Okumura T; Novarini N; Yan HY
    J Acoust Soc Am; 2002 Dec; 112(6):3073-82. PubMed ID: 12509030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic monitors and direct observations provide similar but distinct perspectives on bird assemblages in a lowland forest of eastern Ecuador.
    Blake JG
    PeerJ; 2021; 9():e10565. PubMed ID: 33520440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics behind rough sounds in the song of the Pitangus sulphuratus.
    Döppler JF; Amador A; Goller F; Mindlin GB
    Phys Rev E; 2020 Dec; 102(6-1):062415. PubMed ID: 33466024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing Sounds of Different Sources in a Commercial Broiler House.
    Yang X; Zhao Y; Qi H; Tabler GT
    Animals (Basel); 2021 Mar; 11(3):. PubMed ID: 33807019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition.
    Chesmore ED; Ohya E
    Bull Entomol Res; 2004 Aug; 94(4):319-30. PubMed ID: 15301697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A method for identifying sounds used in the classification of alarm calls.
    Placer J; Slobodchikoff CN
    Behav Processes; 2004 Jul; 67(1):87-98. PubMed ID: 15182929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Template-based automatic recognition of birdsong syllables from continuous recordings.
    Anderson SE; Dave AS; Margoliash D
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1209-19. PubMed ID: 8759970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vocalisation sound pattern identification in young broiler chickens.
    Fontana I; Tullo E; Scrase A; Butterworth A
    Animal; 2016 Sep; 10(9):1567-74. PubMed ID: 26227085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virtual vocalization stimuli for investigating neural representations of species-specific vocalizations.
    DiMattina C; Wang X
    J Neurophysiol; 2006 Feb; 95(2):1244-62. PubMed ID: 16207780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An acoustic detection dataset of birds (Aves) in montane forests using a deep learning approach.
    Wu SH; Ko JC; Lin RS; Tsai WL; Chang HW
    Biodivers Data J; 2023; 11():e97811. PubMed ID: 38327353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating community-wide temporal sampling in passive acoustic monitoring: A comprehensive study of avian vocal patterns in subtropical montane forests.
    Wu SH; Ko JC; Lin RS; Chang-Yang CH; Chang HW
    F1000Res; 2023; 12():1299. PubMed ID: 38655208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards the Automatic Classification of Avian Flight Calls for Bioacoustic Monitoring.
    Salamon J; Bello JP; Farnsworth A; Robbins M; Keen S; Klinck H; Kelling S
    PLoS One; 2016; 11(11):e0166866. PubMed ID: 27880836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing recurrent convolutional neural networks for large scale bird species classification.
    Gupta G; Kshirsagar M; Zhong M; Gholami S; Ferres JL
    Sci Rep; 2021 Aug; 11(1):17085. PubMed ID: 34429468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilateral syringeal interaction in vocal production of an oscine bird sound.
    Nowicki S; Capranica RR
    Science; 1986 Mar; 231(4743):1297-9. PubMed ID: 3945824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studying the song development process: rationale and methods.
    Tchernichovski O; Lints TJ; Deregnaucourt S; Cimenser A; Mitra PP
    Ann N Y Acad Sci; 2004 Jun; 1016():348-63. PubMed ID: 15313784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing sound and visual components for enhancement of urban soundscapes.
    Hong JY; Jeon JY
    J Acoust Soc Am; 2013 Sep; 134(3):2026-36. PubMed ID: 23967935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognizing transient low-frequency whale sounds by spectrogram correlation.
    Mellinger DK; Clark CW
    J Acoust Soc Am; 2000 Jun; 107(6):3518-29. PubMed ID: 10875396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep convolutional network for animal sound classification and source attribution using dual audio recordings.
    Oikarinen T; Srinivasan K; Meisner O; Hyman JB; Parmar S; Fanucci-Kiss A; Desimone R; Landman R; Feng G
    J Acoust Soc Am; 2019 Feb; 145(2):654. PubMed ID: 30823820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.