BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37440113)

  • 1. Identification of Pathways for Production of D-Glucaric Acid by Pseudogluconobacter saccharoketogenes.
    Ito T; Masaki H; Fujita K; Murakami H; Shizuma M; Kiso T; Kiryu T
    Appl Biochem Biotechnol; 2024 Apr; 196(4):1876-1895. PubMed ID: 37440113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Enzymes from Pseudogluconobacter saccharoketogenes Producing d-Glucaric Acid from d-Glucose.
    Ito T; Masaki H; Fujita K; Murakami H; Shizuma M; Kiso T; Kiryu T
    Biosci Biotechnol Biochem; 2021 Dec; 86(1):56-67. PubMed ID: 34669931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.
    Rozeboom HJ; Yu S; Mikkelsen R; Nikolaev I; Mulder HJ; Dijkstra BW
    Protein Sci; 2015 Dec; 24(12):2044-54. PubMed ID: 26440996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and molecular characterization of a quinoprotein alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes IFO 14464.
    Shibata T; Ishii Y; Noguchi Y; Yamada H; Saito Y; Yamashita M
    J Biosci Bioeng; 2001; 92(6):524-31. PubMed ID: 16233140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for the characterization of aldehyde dehydrogenase with use of alcohol dehydrogenase.
    Herold DA; Keil K; Bruns DE
    Res Commun Chem Pathol Pharmacol; 1987 Nov; 58(2):257-67. PubMed ID: 3423423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New quinoproteins in oxidative fermentation.
    Adachi O; Moonmangmee D; Shinagawa E; Toyama H; Yamada M; Matsushita K
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):10-7. PubMed ID: 12686101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase.
    Sui YA; Kishino S; Maruyama S; Ito M; Muramatsu M; Obata S; Ogawa J
    Appl Environ Microbiol; 2022 Dec; 88(23):e0126422. PubMed ID: 36416567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate.
    Li Y; Xue Y; Cao Z; Zhou T; Alnadari F
    World J Microbiol Biotechnol; 2018 Jun; 34(7):102. PubMed ID: 29936649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldehyde dehydrogenase activity of Drosophila melanogaster alcohol dehydrogenase: burst kinetics at high pH and aldehyde dismutase activity at physiological pH.
    Henehan GT; Chang SH; Oppenheimer NJ
    Biochemistry; 1995 Sep; 34(38):12294-301. PubMed ID: 7547972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of D-glucaric acid in mammals: a free-radical mechanism?
    Marsh CA
    Carbohydr Res; 1986 Sep; 153(1):119-31. PubMed ID: 3779687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-imprinted docking of Agrobacterium tumefaciens uronate dehydrogenase for increased substrate selectivity.
    Murugan A; Prathiviraj R; Mothay D; Chellapandi P
    Int J Biol Macromol; 2019 Nov; 140():1214-1225. PubMed ID: 31472210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consolidated bioprocessing of lignocellulose for production of glucaric acid by an artificial microbial consortium.
    Li C; Lin X; Ling X; Li S; Fang H
    Biotechnol Biofuels; 2021 Apr; 14(1):110. PubMed ID: 33931115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.
    Moon TS; Yoon SH; Lanza AM; Roy-Mayhew JD; Prather KL
    Appl Environ Microbiol; 2009 Feb; 75(3):589-95. PubMed ID: 19060162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.
    Sainz F; Jesús Torija M; Matsutani M; Kataoka N; Yakushi T; Matsushita K; Mas A
    Front Microbiol; 2016; 7():1358. PubMed ID: 27625643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system.
    Ji A; Gao P
    Appl Biochem Biotechnol; 2001 Jun; 94(3):213-23. PubMed ID: 11563824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Complex of LaoA and LaoB Acts as a Tat-Dependent Dehydrogenase for Long-Chain Alcohols in Pseudomonas aeruginosa.
    Panasia G; Drees SL; Fetzner S; Philipp B
    Appl Environ Microbiol; 2021 Jul; 87(16):e0076221. PubMed ID: 34085859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.
    Winberg JO; McKinley-McKee JS
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):561-70. PubMed ID: 9445383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of glucaric acid from myo-inositol in engineered Pichia pastoris.
    Liu Y; Gong X; Wang C; Du G; Chen J; Kang Z
    Enzyme Microb Technol; 2016 Sep; 91():8-16. PubMed ID: 27444324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.