These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3744027)

  • 21. Phylogeny of Greya (Lepidoptera: Prodoxidae), based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II: congruence with morphological data.
    Brown JM; Pellmyr O; Thompson JN; Harrison RG
    Mol Biol Evol; 1994 Jan; 11(1):128-41. PubMed ID: 8121281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transitions, transversions, and the molecular evolutionary clock.
    Jukes TH
    J Mol Evol; 1987; 26(1-2):87-98. PubMed ID: 2830404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences.
    Prager EM; Wilson AC
    J Mol Evol; 1988; 27(4):326-35. PubMed ID: 3146643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms for evolving hypervariability: the case of conopeptides.
    Conticello SG; Gilad Y; Avidan N; Ben-Asher E; Levy Z; Fainzilber M
    Mol Biol Evol; 2001 Feb; 18(2):120-31. PubMed ID: 11158371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular phylogenetics of the allodapine bee genus Braunsapis: A-T bias and heterogeneous substitution parameters.
    Schwarz MP; Tierney SM; Cooper SJ; Bull NJ
    Mol Phylogenet Evol; 2004 Jul; 32(1):110-22. PubMed ID: 15186801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonrandom patterns of codon usage and of nucleotide substitutions in human alpha- and beta-globin genes: an evolutionary strategy reducing the rate of mutations with drastic effects?
    Modiano G; Battistuzzi G; Motulsky AG
    Proc Natl Acad Sci U S A; 1981 Feb; 78(2):1110-4. PubMed ID: 6940129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA.
    Cann RL; Brown WM; Wilson AC
    Genetics; 1984 Mar; 106(3):479-99. PubMed ID: 6323246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects.
    Liu H; Beckenbach AT
    Mol Phylogenet Evol; 1992 Mar; 1(1):41-52. PubMed ID: 1342923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On combining protein sequences and nucleic acid sequences in phylogenetic analysis: the homeobox protein case.
    Agosti D; Jacobs D; DeSalle R
    Cladistics; 1996; 12():65-82. PubMed ID: 11541749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A space-time process model for the evolution of DNA sequences.
    Yang Z
    Genetics; 1995 Feb; 139(2):993-1005. PubMed ID: 7713447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.
    Kimura M
    J Mol Evol; 1980 Dec; 16(2):111-20. PubMed ID: 7463489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA.
    Akashi H
    Genetics; 1995 Feb; 139(2):1067-76. PubMed ID: 7713409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method of estimating from two aligned present-day DNA sequences their ancestral composition and subsequent rates of substitution, possibly different in the two lineages, corrected for multiple and parallel substitutions at the same site.
    Blaisdell BE
    J Mol Evol; 1985; 22(1):69-81. PubMed ID: 3932665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The rate heterogeneity of nonsynonymous substitutions in mammalian mitochondrial genes.
    Xia X
    Mol Biol Evol; 1998 Mar; 15(3):336-44. PubMed ID: 9501500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat.
    Wolfe KH; Sharp PM
    J Mol Evol; 1993 Oct; 37(4):441-56. PubMed ID: 8308912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolution of phylogenetic relationships among recently evolved species as a function of amount of DNA sequence: an empirical study based on woodpeckers (Aves: Picidae).
    DeFilippis VR; Moore WS
    Mol Phylogenet Evol; 2000 Jul; 16(1):143-60. PubMed ID: 10877947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution.
    Thomas WK; Beckenbach AT
    J Mol Evol; 1989 Sep; 29(3):233-45. PubMed ID: 2550657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera.
    Pons J; Ribera I; Bertranpetit J; Balke M
    Mol Phylogenet Evol; 2010 Aug; 56(2):796-807. PubMed ID: 20152911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signature of positive selection in mitochondrial DNA in Cetartiodactyla.
    Mori S; Matsunami M
    Genes Genet Syst; 2018 Sep; 93(2):65-73. PubMed ID: 29643269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neutral and non-neutral evolution of Drosophila mitochondrial DNA.
    Rand DM; Dorfsman M; Kann LM
    Genetics; 1994 Nov; 138(3):741-56. PubMed ID: 7851771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.