BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37441250)

  • 21. Chirality-Dependent and Intrinsic Auxeticity for Single-Walled Carbon Nanotubes.
    Zhang HN; Fan Y; Shen HS
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. "Smart poisoning" of Co/SiO
    Yuan Y; Karahan HE; Yıldırım C; Wei L; Birer Ö; Zhai S; Lau R; Chen Y
    Nanoscale; 2016 Oct; 8(40):17705-17713. PubMed ID: 27722714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalable growth of single-walled carbon nanotubes with a highly uniform structure.
    Hussain A; Ding EX; Mclean B; Mustonen K; Ahmad S; Tavakkoli M; Page AJ; Zhang Q; Kotakoski J; Kauppinen EI
    Nanoscale; 2020 Jun; 12(23):12263-12267. PubMed ID: 32495811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct Synthesis of Colorful Single-Walled Carbon Nanotube Thin Films.
    Liao Y; Jiang H; Wei N; Laiho P; Zhang Q; Khan SA; Kauppinen EI
    J Am Chem Soc; 2018 Aug; 140(31):9797-9800. PubMed ID: 30049205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study.
    Hata T; Kawai H; Ohto T; Yamashita K
    J Chem Phys; 2013 Jul; 139(4):044711. PubMed ID: 23902007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes.
    Liu B; Liu J; Tu X; Zhang J; Zheng M; Zhou C
    Nano Lett; 2013 Sep; 13(9):4416-21. PubMed ID: 23937554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chirality enriched carbon nanotubes with tunable wrapping via corona phase exchange purification (CPEP).
    Nißler R; Mann FA; Preiß H; Selvaggio G; Herrmann N; Kruss S
    Nanoscale; 2019 Jun; 11(23):11159-11166. PubMed ID: 31149692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure.
    Yang F; Wang X; Li M; Liu X; Zhao X; Zhang D; Zhang Y; Yang J; Li Y
    Acc Chem Res; 2016 Apr; 49(4):606-15. PubMed ID: 26999451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement.
    Su W; Li X; Li L; Yang D; Wang F; Wei X; Zhou W; Kataura H; Xie S; Liu H
    Nat Commun; 2023 Mar; 14(1):1672. PubMed ID: 36966164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chirality-dependent reactivity of individual single-walled carbon nanotubes.
    Liu B; Jiang H; Krasheninnikov AV; Nasibulin AG; Ren W; Liu C; Kauppinen EI; Cheng HM
    Small; 2013 Apr; 9(8):1379-86. PubMed ID: 23495250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-precision solid catalysts for investigation of carbon nanotube synthesis and structure.
    Zhang X; Graves B; De Volder M; Yang W; Johnson T; Wen B; Su W; Nishida R; Xie S; Boies A
    Sci Adv; 2020 Sep; 6(40):. PubMed ID: 32998901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled synthesis of single-chirality carbon nanotubes.
    Sanchez-Valencia JR; Dienel T; Gröning O; Shorubalko I; Mueller A; Jansen M; Amsharov K; Ruffieux P; Fasel R
    Nature; 2014 Aug; 512(7512):61-4. PubMed ID: 25100481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chirality-Selective Functionalization of Semiconducting Carbon Nanotubes with a Reactivity-Switchable Molecule.
    Powell LR; Kim M; Wang Y
    J Am Chem Soc; 2017 Sep; 139(36):12533-12540. PubMed ID: 28844140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zigzag HgTe Nanowires Modify the Electron-Phonon Interaction in Chirality-Refined Single-Walled Carbon Nanotubes.
    Hu Z; Breeze B; Kashtiban RJ; Sloan J; Lloyd-Hughes J
    ACS Nano; 2022 Apr; 16(4):6789-6800. PubMed ID: 35389617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst.
    Liu B; Ren W; Li S; Liu C; Cheng HM
    Chem Commun (Camb); 2012 Feb; 48(18):2409-11. PubMed ID: 22274707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes.
    Hussain A; Liao Y; Zhang Q; Ding EX; Laiho P; Ahmad S; Wei N; Tian Y; Jiang H; Kauppinen EI
    Nanoscale; 2018 May; 10(20):9752-9759. PubMed ID: 29767193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes.
    Nißler R; Kurth L; Li H; Spreinat A; Kuhlemann I; Flavel BS; Kruss S
    Anal Chem; 2021 Apr; 93(16):6446-6455. PubMed ID: 33830740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of lanthanide double-decker phthalocyanines on single-walled carbon nanotubes: structural changes and electronic properties as studied by density functional theory.
    Bolívar-Pineda LM; Mendoza-Domínguez CU; Basiuk VA
    J Mol Model; 2023 Apr; 29(5):158. PubMed ID: 37099146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalyst size effects on the growth of single-walled nanotubes in neutral and plasma systems.
    Tam E; Ostrikov KK
    Nanotechnology; 2009 Sep; 20(37):375603. PubMed ID: 19706955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale plasma chemistry enables fast, size-selective nanotube nucleation.
    Ostrikov KK; Mehdipour H
    J Am Chem Soc; 2012 Mar; 134(9):4303-12. PubMed ID: 22299631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.