These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37441776)

  • 41. The relief effects of organic acids on Scirpus triqueter L. under pyrene-lead stress.
    Zhang X; Chen J; Liu X; Chen X; Liu L; Niu Y; Wang R
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):15828-15837. PubMed ID: 30953322
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photocatalytic degradation of metronidazole and oxytetracycline by novel l-Arginine (C, N codoped)-TiO
    Eskandari P; Amarloo E; Zangeneh H; Rezakazemi M; Aminabhavi TM
    Chemosphere; 2023 Oct; 337():139282. PubMed ID: 37348615
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Laboratory study of heavy metal phytoremediation by three wetland macrophytes.
    Weiss J; Hondzo M; Biesboer D; Semmens M
    Int J Phytoremediation; 2006; 8(3):245-59. PubMed ID: 17120528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distribution by influence factors of pyrene removal in chemical enhancers assisted microbial phytoremediation of
    Zheng K; Fan J; Hu X; Zhang X; Liu X; Shen J
    Int J Phytoremediation; 2019; 21(12):1190-1196. PubMed ID: 31119945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole.
    Ahmadzadeh S; Dolatabadi M
    Chemosphere; 2018 Dec; 212():533-539. PubMed ID: 30173107
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process.
    Shen J; Ou C; Zhou Z; Chen J; Fang K; Sun X; Li J; Zhou L; Wang L
    J Hazard Mater; 2013 Sep; 260():993-1000. PubMed ID: 23892166
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of plant-driven uptake and translocation of clofibric acid by Scirpus validus.
    Zhang DQ; Gersberg RM; Hua T; Zhu J; Ng WJ; Tan SK
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):4612-20. PubMed ID: 23274803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes - A review.
    Mirzaei A; Chen Z; Haghighat F; Yerushalmi L
    Chemosphere; 2017 May; 174():665-688. PubMed ID: 28199944
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A microcosm investigation of fe (iron) removal using macrophytes of ramsar lake: A phytoremediation approach.
    Singh MM; Rai PK
    Int J Phytoremediation; 2016 Dec; 18(12):1231-6. PubMed ID: 27258126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of adsorption and photo-Fenton processes for phenol and paracetamol removing from aqueous solutions: single and binary systems.
    Rad LR; Haririan I; Divsar F
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():423-8. PubMed ID: 25448945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes.
    Sruthi T; Gandhimathi R; Ramesh ST; Nidheesh PV
    Chemosphere; 2018 Nov; 210():38-43. PubMed ID: 29986221
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils.
    Zhang X; Su C; Liu X; Liu Z; Liang X; Zhang Y; Feng Y
    Chemosphere; 2020 Feb; 241():125027. PubMed ID: 31606002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced metronidazole removal in seawater using a single-chamber bioelectrochemical system.
    Xin H; Chen X; Ye Y; Liao Y; Luo H; Tang CY; Liu G
    Water Res; 2024 Mar; 252():121212. PubMed ID: 38320394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An electro-Fenton process to treat waste liquor of a hyperaccumulator that contains potentially toxic elements and the COD.
    Hu P; Zhang Q; Yang Y; Dong B; Ying R; Wu L; Liu H; Luo Y; Christie P
    Int J Phytoremediation; 2021; 23(7):715-725. PubMed ID: 33251821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The use of proteomic analysis for exploring the phytoremediation mechanism of Scirpus triqueter to pyrene.
    Zhang X; Liu X; Chai W; Wei J; Wang Q; Li B; Li H
    J Hazard Mater; 2013 Sep; 260():1001-7. PubMed ID: 23892167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Remediation of water contaminated with diesel oil using a coupled process: Biological degradation followed by heterogeneous Fenton-like oxidation.
    Chen Y; Lin J; Chen Z
    Chemosphere; 2017 Sep; 183():286-293. PubMed ID: 28551205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fate of thiabendazole through the treatment of a simulated agro-food industrial effluent by combined MBR/Fenton processes at μg/L scale.
    Sánchez Peréz JA; Carra I; Sirtori C; Agüera A; Esteban B
    Water Res; 2014 Mar; 51():55-63. PubMed ID: 24388831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of metronidazole on mesophilic and thermophilic fermentation: Biodegradation mechanisms, microbial communities, and reversibility.
    Zhao W; Zhang X; Cai Y; Zhao S; Wang S
    Bioresour Technol; 2022 Oct; 362():127795. PubMed ID: 35988858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of metronidazole by TiO
    Tran ML; Fu CC; Juang RS
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28285-28295. PubMed ID: 30078135
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic degradation of the pollutant guaiacol by dark Fenton and solar photo-Fenton processes.
    Samet Y; Wali I; Abdelhédi R
    Environ Sci Pollut Res Int; 2011 Nov; 18(9):1497-507. PubMed ID: 21538226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.