These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37441786)

  • 1. Kβ X-ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for H
    Lim H; Brueggemeyer MT; Transue WJ; Meier KK; Jones SM; Kroll T; Sokaras D; Kelemen B; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2023 Jul; 145(29):16015-16025. PubMed ID: 37441786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kβ X-ray Emission Spectroscopy as a Probe of Cu(I) Sites: Application to the Cu(I) Site in Preprocessed Galactose Oxidase.
    Lim H; Baker ML; Cowley RE; Kim S; Bhadra M; Siegler MA; Kroll T; Sokaras D; Weng TC; Biswas DR; Dooley DM; Karlin KD; Hedman B; Hodgson KO; Solomon EI
    Inorg Chem; 2020 Nov; 59(22):16567-16581. PubMed ID: 33136386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A frontier-orbital view of the initial steps of lytic polysaccharide monooxygenase reactions.
    Wieduwilt EK; Lo Leggio L; Hedegård ED
    Dalton Trans; 2024 Mar; 53(13):5796-5807. PubMed ID: 38445349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction.
    Gudmundsson M; Kim S; Wu M; Ishida T; Momeni MH; Vaaje-Kolstad G; Lundberg D; Royant A; Ståhlberg J; Eijsink VG; Beckham GT; Sandgren M
    J Biol Chem; 2014 Jul; 289(27):18782-92. PubMed ID: 24828494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase.
    Martin-Diaconescu V; Chacón KN; Delgado-Jaime MU; Sokaras D; Weng TC; DeBeer S; Blackburn NJ
    Inorg Chem; 2016 Apr; 55(7):3431-9. PubMed ID: 26965786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the reactive intermediate in polysaccharide monooxygenases.
    Hedegård ED; Ryde U
    J Biol Inorg Chem; 2017 Oct; 22(7):1029-1037. PubMed ID: 28698982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase.
    Liu Y; Harnden KA; Van Stappen C; Dikanov SA; Lu Y
    Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2308286120. PubMed ID: 37844252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
    Isaksen I; Jana S; Payne CM; Bissaro B; Røhr ÅK
    Biophys J; 2024 May; 123(9):1139-1151. PubMed ID: 38571309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
    Chaplin AK; Wilson MT; Hough MA; Svistunenko DA; Hemsworth GR; Walton PH; Vijgenboom E; Worrall JAR
    J Biol Chem; 2016 Jun; 291(24):12838-12850. PubMed ID: 27129229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic basis of substrate-O
    Courtade G; Ciano L; Paradisi A; Lindley PJ; Forsberg Z; Sørlie M; Wimmer R; Davies GJ; Eijsink VGH; Walton PH; Aachmann FL
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19178-19189. PubMed ID: 32723819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the protonation states of the histidine brace in an AA10 lytic polysaccharide monooxygenase using CW-EPR spectroscopy and DFT calculations.
    Lindley PJ; Parkin A; Davies GJ; Walton PH
    Faraday Discuss; 2022 May; 234(0):336-348. PubMed ID: 35171174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications.
    Ipsen JØ; Hallas-Møller M; Brander S; Lo Leggio L; Johansen KS
    Biochem Soc Trans; 2021 Feb; 49(1):531-540. PubMed ID: 33449071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Mechanisms of Oxygen Activation and Hydrogen Peroxide Formation in Lytic Polysaccharide Monooxygenases.
    Wang B; Walton PH; Rovira C
    ACS Catal; 2019 Jun; 9(6):4958-4969. PubMed ID: 32051771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polysaccharide degradation by lytic polysaccharide monooxygenases.
    Forsberg Z; Sørlie M; Petrović D; Courtade G; Aachmann FL; Vaaje-Kolstad G; Bissaro B; Røhr ÅK; Eijsink VG
    Curr Opin Struct Biol; 2019 Dec; 59():54-64. PubMed ID: 30947104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
    Frandsen KEH; Tovborg M; Jørgensen CI; Spodsberg N; Rosso MN; Hemsworth GR; Garman EF; Grime GW; Poulsen JN; Batth TS; Miyauchi S; Lipzen A; Daum C; Grigoriev IV; Johansen KS; Henrissat B; Berrin JG; Lo Leggio L
    J Biol Chem; 2019 Nov; 294(45):17117-17130. PubMed ID: 31471321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the Ambiguous Electron Paramagnetic Resonance Signals in the Lytic Polysaccharide Monooxygenase from
    Gómez-Piñeiro RJ; Drosou M; Bertaina S; Decroos C; Simaan AJ; Pantazis DA; Orio M
    Inorg Chem; 2022 May; 61(20):8022-8035. PubMed ID: 35549254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate-binding modules enhance H
    Gao W; Li T; Zhou H; Ju J; Yin H
    J Biol Chem; 2024 Jan; 300(1):105573. PubMed ID: 38122901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective copper-cobalt binuclear Prussian blue analogue nanozymes with high specificity as lytic polysaccharide monooxygenase-mimic via axial ligation of histidine.
    Liu Y; Li R; Du J; Xie J; Guo R
    J Colloid Interface Sci; 2024 Mar; 657():15-24. PubMed ID: 38029525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.