These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37441922)
1. Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors. Enemark JH J Inorg Biochem; 2023 Oct; 247():112312. PubMed ID: 37441922 [TBL] [Abstract][Full Text] [Related]
2. Effects of large-scale amino acid substitution in the polypeptide tether connecting the heme and molybdenum domains on catalysis in human sulfite oxidase. Johnson-Winters K; Nordstrom AR; Davis AC; Tollin G; Enemark JH Metallomics; 2010 Nov; 2(11):766-70. PubMed ID: 21072368 [TBL] [Abstract][Full Text] [Related]
3. Effects of interdomain tether length and flexibility on the kinetics of intramolecular electron transfer in human sulfite oxidase. Johnson-Winters K; Nordstrom AR; Emesh S; Astashkin AV; Rajapakshe A; Berry RE; Tollin G; Enemark JH Biochemistry; 2010 Feb; 49(6):1290-6. PubMed ID: 20063894 [TBL] [Abstract][Full Text] [Related]
4. Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics. Davis AC; Cornelison MJ; Meyers KT; Rajapakshe A; Berry RE; Tollin G; Enemark JH Dalton Trans; 2013 Mar; 42(9):3043-9. PubMed ID: 22975842 [TBL] [Abstract][Full Text] [Related]
5. Determination of the distance between the Mo(V) and Fe(III) heme centers of wild type human sulfite oxidase by pulsed EPR spectroscopy. Astashkin AV; Rajapakshe A; Cornelison MJ; Johnson-Winters K; Enemark JH J Phys Chem B; 2012 Feb; 116(6):1942-50. PubMed ID: 22229742 [TBL] [Abstract][Full Text] [Related]
6. Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine. Emesh S; Rapson TD; Rajapakshe A; Kappler U; Bernhardt PV; Tollin G; Enemark JH Biochemistry; 2009 Mar; 48(10):2156-63. PubMed ID: 19226119 [TBL] [Abstract][Full Text] [Related]
7. Oxygen and nitrite reduction by heme-deficient sulphite oxidase in a patient with mild sulphite oxidase deficiency. Bender D; Kaczmarek AT; Kuester S; Burlina AB; Schwarz G J Inherit Metab Dis; 2020 Jul; 43(4):748-757. PubMed ID: 31950508 [TBL] [Abstract][Full Text] [Related]
8. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses. Johnson-Winters K; Tollin G; Enemark JH Biochemistry; 2010 Aug; 49(34):7242-54. PubMed ID: 20666399 [TBL] [Abstract][Full Text] [Related]
9. Intramolecular electron transfer in sulfite-oxidizing enzymes: probing the role of aromatic amino acids. Rajapakshe A; Meyers KT; Berry RE; Tollin G; Enemark JH J Biol Inorg Chem; 2012 Mar; 17(3):345-52. PubMed ID: 22057690 [TBL] [Abstract][Full Text] [Related]
10. The pathogenic human sulfite oxidase mutants G473D and A208D are defective in intramolecular electron transfer. Feng C; Wilson HL; Tollin G; Astashkin AV; Hazzard JT; Rajagopalan KV; Enemark JH Biochemistry; 2005 Oct; 44(42):13734-43. PubMed ID: 16229463 [TBL] [Abstract][Full Text] [Related]
11. Impaired mitochondrial maturation of sulfite oxidase in a patient with severe sulfite oxidase deficiency. Bender D; Kaczmarek AT; Santamaria-Araujo JA; Stueve B; Waltz S; Bartsch D; Kurian L; Cirak S; Schwarz G Hum Mol Genet; 2019 Sep; 28(17):2885-2899. PubMed ID: 31127934 [TBL] [Abstract][Full Text] [Related]
13. Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase. Johnson-Winters K; Davis AC; Arnold AR; Berry RE; Tollin G; Enemark JH J Biol Inorg Chem; 2013 Aug; 18(6):645-53. PubMed ID: 23779234 [TBL] [Abstract][Full Text] [Related]
14. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency. Belaidi AA; Röper J; Arjune S; Krizowski S; Trifunovic A; Schwarz G Biochem J; 2015 Jul; 469(2):211-21. PubMed ID: 26171830 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanism of intramolecular electron transfer in dimeric sulfite oxidase. Eh M; Kaczmarek AT; Schwarz G; Bender D J Biol Chem; 2022 Mar; 298(3):101668. PubMed ID: 35120924 [TBL] [Abstract][Full Text] [Related]
16. A defect in molybdenum cofactor binding causes an attenuated form of sulfite oxidase deficiency. Kaczmarek AT; Bender D; Gehling T; Kohl JB; Daimagüler HS; Santamaria-Araujo JA; Liebau MC; Koy A; Cirak S; Schwarz G J Inherit Metab Dis; 2022 Mar; 45(2):169-182. PubMed ID: 34741542 [TBL] [Abstract][Full Text] [Related]
17. The catalytic mechanism for NO production by the mitochondrial enzyme, sulfite oxidase. Mutus B Biochem J; 2019 Jul; 476(13):1955-1956. PubMed ID: 31308158 [TBL] [Abstract][Full Text] [Related]
18. Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli. Havelius KG; Reschke S; Horn S; Döring A; Niks D; Hille R; Schulzke C; Leimkühler S; Haumann M Inorg Chem; 2011 Feb; 50(3):741-8. PubMed ID: 21190337 [TBL] [Abstract][Full Text] [Related]
19. Role of conserved tyrosine 343 in intramolecular electron transfer in human sulfite oxidase. Feng C; Wilson HL; Hurley JK; Hazzard JT; Tollin G; Rajagopalan KV; Enemark JH J Biol Chem; 2003 Jan; 278(5):2913-20. PubMed ID: 12424234 [TBL] [Abstract][Full Text] [Related]
20. The structures of the C185S and C185A mutants of sulfite oxidase reveal rearrangement of the active site. Qiu JA; Wilson HL; Pushie MJ; Kisker C; George GN; Rajagopalan KV Biochemistry; 2010 May; 49(18):3989-4000. PubMed ID: 20356030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]