These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Synthesis of LDHs Based on Fly-Ash and Its Influence on the Flame Retardant Properties of EVA/LDHs Composites. Li S; Zhu XD; Li L; Qian Y; Guo Q; Ma J Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808595 [TBL] [Abstract][Full Text] [Related]
23. Non-covalently Functionalized Graphene Oxide-Based Coating to Enhance Thermal Stability and Flame Retardancy of PVA Film. Chen W; Liu P; Min L; Zhou Y; Liu Y; Wang Q; Duan W Nanomicro Lett; 2018; 10(3):39. PubMed ID: 30393688 [TBL] [Abstract][Full Text] [Related]
24. A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid. Zhang Z; Li X; Ma Z; Ning H; Zhang D; Wang Y Dalton Trans; 2020 Aug; 49(32):11226-11237. PubMed ID: 32756631 [TBL] [Abstract][Full Text] [Related]
25. Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate. Farooq M; Sipponen MH; Seppälä A; Österberg M ACS Appl Mater Interfaces; 2018 Aug; 10(32):27407-27415. PubMed ID: 30033716 [TBL] [Abstract][Full Text] [Related]
26. Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene. Xu S; Li SY; Zhang M; Zeng HY; Wu K; Tian XY; Chen CR; Pan Y Carbohydr Polym; 2020 Apr; 234():115891. PubMed ID: 32070511 [TBL] [Abstract][Full Text] [Related]
27. The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: a critical review. Liu Y; Gao Y; Wang Q; Lin W Dalton Trans; 2018 Oct; 47(42):14827-14840. PubMed ID: 30280746 [TBL] [Abstract][Full Text] [Related]
28. Freeze-casting production of thermal insulating and fire-retardant lightweight aerogels based on nanocellulose and boron nitride. Liu C; Huang C; Li Y; Liu Y; Bian H; Xiang Z; Wang H; Wang H; Xiao H Int J Biol Macromol; 2023 Dec; 252():126370. PubMed ID: 37595711 [TBL] [Abstract][Full Text] [Related]
29. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel. Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C Gels; 2021 Oct; 7(4):. PubMed ID: 34698206 [TBL] [Abstract][Full Text] [Related]
31. Leather Solid Waste/Poly(vinyl alcohol)/Polyaniline Aerogel with Mechanical Robustness, Flame Retardancy, and Enhanced Electromagnetic Interference Shielding. Zhang T; Zeng S; Jiang H; Li Z; Bai D; Li Y; Li J ACS Appl Mater Interfaces; 2021 Mar; 13(9):11332-11343. PubMed ID: 33625832 [TBL] [Abstract][Full Text] [Related]
32. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy. Guo L; Chen Z; Lyu S; Fu F; Wang S Carbohydr Polym; 2018 Jan; 179():333-340. PubMed ID: 29111059 [TBL] [Abstract][Full Text] [Related]
33. Comparative Study of M(Ⅱ)Al (M=Co, Ni) Layered Double Hydroxides for Silicone Foam: Characterization, Flame Retardancy, and Smoke Suppression. Zhou LL; Li WX; Zhao HB; Zhao B Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232352 [TBL] [Abstract][Full Text] [Related]
34. Lightweight and Ultrastrong Polymer Foams with Unusually Superior Flame Retardancy. Xu L; Xiao L; Jia P; Goossens K; Liu P; Li H; Cheng C; Huang Y; Bielawski CW; Geng J ACS Appl Mater Interfaces; 2017 Aug; 9(31):26392-26399. PubMed ID: 28707895 [TBL] [Abstract][Full Text] [Related]
35. Lightweight, flame retardant Janus carboxymethyl cellulose aerogel with fire-warning properties for smart sensor. Liu Y; Cheng F; Li K; Yao J; Li X; Xia Y Carbohydr Polym; 2024 Mar; 328():121730. PubMed ID: 38220348 [TBL] [Abstract][Full Text] [Related]
36. Elastic Aerogels of Cellulose Nanofibers@Metal-Organic Frameworks for Thermal Insulation and Fire Retardancy. Zhou S; Apostolopoulou-Kalkavoura V; Tavares da Costa MV; Bergström L; Strømme M; Xu C Nanomicro Lett; 2019 Dec; 12(1):9. PubMed ID: 34138073 [TBL] [Abstract][Full Text] [Related]
37. Double cross-linked biomass aerogels with enhanced mechanical strength and flame retardancy for construction thermal insulation. Gong L; An X; Ma C; Wang R; Zhou X; Liu C; Li N; Liu Z; Li X Int J Biol Macromol; 2024 Nov; 281(Pt 1):136304. PubMed ID: 39370080 [TBL] [Abstract][Full Text] [Related]
38. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels. Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277 [TBL] [Abstract][Full Text] [Related]
39. Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. Wang NN; Wang H; Wang YY; Wei YH; Si JY; Yuen ACY; Xie JS; Yu B; Zhu SE; Lu HD; Yang W; Chan QN; Yeoh GH ACS Appl Mater Interfaces; 2019 Oct; 11(43):40512-40523. PubMed ID: 31577120 [TBL] [Abstract][Full Text] [Related]
40. Harnessing the Flexibility of Lightweight Cellulose Nanofiber Composite Aerogels for Superior Thermal Insulation and Fire Protection. Bhardwaj S; Singh S; Dev K; Chhajed M; Maji PK ACS Appl Mater Interfaces; 2024 Apr; 16(14):18075-18089. PubMed ID: 38560888 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]