These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37442033)

  • 1. Neuromodulatory system in network science: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Li D; Mu Y
    Phys Life Rev; 2023 Sep; 46():155-157. PubMed ID: 37442033
    [No Abstract]   [Full Text] [Related]  

  • 2. Decoding brain complexity: Structural-functional interplay in neural networks: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Li Q; Berner R; Wang X
    Phys Life Rev; 2023 Dec; 47():87-89. PubMed ID: 37776745
    [No Abstract]   [Full Text] [Related]  

  • 3. On the structure function dichotomy: A perspective from human brain network modeling. Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Petkoski S
    Phys Life Rev; 2023 Dec; 47():165-167. PubMed ID: 37918193
    [No Abstract]   [Full Text] [Related]  

  • 4. More is definitely different: The zebrafish as witness: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Tyloo M
    Phys Life Rev; 2023 Sep; 46():71-72. PubMed ID: 37285666
    [No Abstract]   [Full Text] [Related]  

  • 5. Bridging network structures and dynamics: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Ji et al.
    Ma Z
    Phys Life Rev; 2023 Sep; 46():245-247. PubMed ID: 37506591
    [No Abstract]   [Full Text] [Related]  

  • 6. Complexity in structural and functional brain networks. Comment on "Structure and function in artificial, zebrafish and human neural networks" by Ji et al.
    Li C; Hens C
    Phys Life Rev; 2023 Dec; 47():131-132. PubMed ID: 37866095
    [No Abstract]   [Full Text] [Related]  

  • 7. Unraveling the complexity of neural networks: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Kang L; Liu Z
    Phys Life Rev; 2023 Sep; 46():158-160. PubMed ID: 37442034
    [No Abstract]   [Full Text] [Related]  

  • 8. Untangling the structure and function of complex neuronal networks: Comment on "Structure and function in artificial, zebrafish and human neural networks".
    Algar SD; Rodger J; Small M
    Phys Life Rev; 2023 Sep; 46():182-184. PubMed ID: 37478625
    [No Abstract]   [Full Text] [Related]  

  • 9. Structure and function in artificial, zebrafish and human neural networks.
    Ji P; Wang Y; Peron T; Li C; Nagler J; Du J
    Phys Life Rev; 2023 Jul; 45():74-111. PubMed ID: 37182376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergent Temperature Representations in Artificial and Biological Neural Networks.
    Haesemeyer M; Schier AF; Engert F
    Neuron; 2019 Sep; 103(6):1123-1134.e6. PubMed ID: 31376984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on Pathak et al. Artificial neural network model effectively estimates muscle and fat mass using simple demographic and anthropometric measures, Clinical Nutrition, Nov. 2021.
    Cichosz SL; Hejlesen O
    Clin Nutr; 2022 Mar; 41(3):794. PubMed ID: 35153106
    [No Abstract]   [Full Text] [Related]  

  • 12. Zebrafish Neuroscience: Using Artificial Neural Networks to Help Understand Brains.
    Ahrens MB
    Curr Biol; 2019 Nov; 29(21):R1138-R1140. PubMed ID: 31689401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progenitor cells in the adult zebrafish nervous system express a Brn-1-related POU gene, tai-ji.
    Huang S; Sato S
    Mech Dev; 1998 Feb; 71(1-2):23-35. PubMed ID: 9507055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses.
    Bozhko DV; Myrov VO; Kolchanova SM; Polovian AI; Galumov GK; Demin KA; Zabegalov KN; Strekalova T; de Abreu MS; Petersen EV; Kalueff AV
    Prog Neuropsychopharmacol Biol Psychiatry; 2022 Jan; 112():110405. PubMed ID: 34320403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Replication in Neural Networks.
    Gabor T; Illium S; Zorn M; Lenta C; Mattausch A; Belzner L; Linnhoff-Popien C
    Artif Life; 2022 Jun; 28(2):205-223. PubMed ID: 35727999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Informing deep neural networks by multiscale principles of neuromodulatory systems.
    Mei J; Muller E; Ramaswamy S
    Trends Neurosci; 2022 Mar; 45(3):237-250. PubMed ID: 35074219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural networks help zebrafish to step up as a model for efficient drug screening in glioblastoma.
    Ferrarese R; Carro MS
    Neuro Oncol; 2022 May; 24(5):739-740. PubMed ID: 35182417
    [No Abstract]   [Full Text] [Related]  

  • 18. A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafish Danio rerio.
    Whitlock KE; Smith KM; Kim H; Harden MV
    Development; 2005 Dec; 132(24):5491-502. PubMed ID: 16291787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial astrocytes improve neural network performance.
    Porto-Pazos AB; Veiguela N; Mesejo P; Navarrete M; Alvarellos A; Ibáñez O; Pazos A; Araque A
    PLoS One; 2011 Apr; 6(4):e19109. PubMed ID: 21526157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.