BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37442035)

  • 1. Fast co-pyrolysis behaviors and synergistic effects of corn stover and polyethylene via rapid infrared heating.
    Dai C; Hu E; Yang Y; Li M; Li C; Zeng Y
    Waste Manag; 2023 Sep; 169():147-156. PubMed ID: 37442035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast pyrolysis characteristics and its mechanism of corn stover over iron oxide via quick infrared heating.
    Li M; Hu E; Tian Y; Yang Y; Dai C; Li C
    Waste Manag; 2022 Jul; 149():60-69. PubMed ID: 35724609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.
    Zhang Y; Fan L; Liu S; Zhou N; Ding K; Peng P; Anderson E; Addy M; Cheng Y; Liu Y; Li B; Snyder J; Chen P; Ruan R
    Bioresour Technol; 2018 Jul; 259():461-464. PubMed ID: 29605465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-interaction of volatiles in fast co-pyrolysis of waste tyre and corn stover via TG-FTIR and rapid infrared heating techniques.
    Li C; Liu Z; Yu J; Hu E; Zeng Y; Tian Y
    Waste Manag; 2023 Sep; 171():421-432. PubMed ID: 37783137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.
    Liu S; Xie Q; Zhang B; Cheng Y; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2016 Mar; 204():164-170. PubMed ID: 26773959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis behaviors of anaerobic digestion residues in a fixed-bed reactor with rapid infrared heating.
    Hu E; Li M; Tian Y; Yi X; Dai C; Shao S; Li C; Zhao Y
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51815-51826. PubMed ID: 35257338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis behavior of low-density polyethylene over HZSM-5 via rapid infrared heating.
    Wu Y; Wang K; Wei B; Yang H; Jin L; Hu H
    Sci Total Environ; 2022 Feb; 806(Pt 3):151287. PubMed ID: 34736756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing hydrocarbon production via ex-situ catalytic co-pyrolysis of biomass and high-density polyethylene: Study of synergistic effect and aromatics selectivity.
    He T; Zhong S; Liu C; Shujaa A; Zhang B
    Waste Manag; 2021 Jun; 128():189-199. PubMed ID: 33992999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.
    Chen G; Liu C; Ma W; Zhang X; Li Y; Yan B; Zhou W
    Bioresour Technol; 2014 Aug; 166():500-7. PubMed ID: 24951937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast microwave assisted pyrolysis of biomass using microwave absorbent.
    Borges FC; Du Z; Xie Q; Trierweiler JO; Cheng Y; Wan Y; Liu Y; Zhu R; Lin X; Chen P; Ruan R
    Bioresour Technol; 2014 Mar; 156():267-74. PubMed ID: 24518438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-pyrolysis of neem wood bark and low-density polyethylene: influence of plastic on pyrolysis product distribution and bio-oil characterization.
    Kaushik VS; Dhanalakshmi CS; Madhu P; Tamilselvam P
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88213-88223. PubMed ID: 35831654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology.
    Neha S; Remya N
    J Environ Manage; 2021 Nov; 297():113345. PubMed ID: 34329909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast pyrolysis behaviors of cedar in an infrared-heated fixed-bed reactor.
    Zhu J; Jin L; Li J; Bao Z; Li Y; Hu H
    Bioresour Technol; 2019 Oct; 290():121739. PubMed ID: 31302467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.
    Zhang H; Xiao R; Wang D; He G; Shao S; Zhang J; Zhong Z
    Bioresour Technol; 2011 Mar; 102(5):4258-64. PubMed ID: 21232946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil.
    Tshikesho RS; Kumar A; Huhnke RL; Apblett A
    Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.
    Solak A; Rutkowski P
    Waste Manag; 2014 Feb; 34(2):504-12. PubMed ID: 24252369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast corn stalk pyrolysis and the influence of catalysts on product distribution.
    Sun T; Li Z; Zhang Z; Wang Z; Yang S; Yang Y; Wang X; Liu S; Zhang Q; Lei T
    Bioresour Technol; 2020 Apr; 301():122739. PubMed ID: 31945683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast pyrolysis of corn stovers with ceramic ball heat carriers in a novel dual concentric rotary cylinder reactor.
    Fu P; Bai X; Li Z; Yi W; Li Y; Zhang Y
    Bioresour Technol; 2018 Sep; 263():467-474. PubMed ID: 29772509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating.
    Bu Q; Cao M; Wang M; Zhang X; Mao H
    Sci Total Environ; 2021 Feb; 754():142174. PubMed ID: 32916498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of coal ash on the characteristics of corn straw pyrolysis products.
    Qin Q; Zhou J; Lin B; Xie C; Zhou L
    Bioresour Technol; 2020 Dec; 318():124055. PubMed ID: 32911365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.