These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37442035)

  • 21. Influence of coal ash on the characteristics of corn straw pyrolysis products.
    Qin Q; Zhou J; Lin B; Xie C; Zhou L
    Bioresour Technol; 2020 Dec; 318():124055. PubMed ID: 32911365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A; Tahmasebi A; Tian L; Yu J
    Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast hydrothermal co-liquefaction of corn stover and cow manure for biocrude and hydrochar production.
    Liu Q; Xu R; Yan C; Han L; Lei H; Ruan R; Zhang X
    Bioresour Technol; 2021 Nov; 340():125630. PubMed ID: 34325395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of peach endocarp and polyethylene residue by the co-pyrolysis process.
    Valadão LS; Dos Santos Duarte C; de Los Santos DG; Filho PJS
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):10702-10716. PubMed ID: 34528192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products.
    Varma AK; Thakur LS; Shankar R; Mondal P
    Waste Manag; 2019 Apr; 89():224-235. PubMed ID: 31079735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.
    Kabir G; Mohd Din AT; Hameed BH
    Bioresour Technol; 2017 Oct; 241():563-572. PubMed ID: 28601774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality.
    Hopa DY; Alagöz O; Yılmaz N; Dilek M; Arabacı G; Mutlu T
    Waste Manag Res; 2019 Sep; 37(9):925-933. PubMed ID: 31319779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.
    Shah A; Darr MJ; Dalluge D; Medic D; Webster K; Brown RC
    Bioresour Technol; 2012 Dec; 125():348-52. PubMed ID: 23069609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heating temperature dependence of molecular characteristics and biological response for biomass pyrolysis volatile-derived water-dissolved organic matter.
    Shang H; Fu Q; Zhang S; Zhu X
    Sci Total Environ; 2021 Feb; 757():143749. PubMed ID: 33223178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
    Li N; Wang X; Bai X; Li Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1501-11. PubMed ID: 26964339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of sustainable chemicals from waste tea powder and Polystyrene via Microwave-Assisted in-situ catalytic Co-Pyrolysis: Analysis of pyrolysis using experimental and modeling approaches.
    Suriapparao DV; Sridevi V; Ramesh P; Sankar Rao C; Tukarambai M; Kamireddi D; Gautam R; Dharaskar SA; Pritam K
    Bioresour Technol; 2022 Oct; 362():127813. PubMed ID: 36031137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds.
    Efika CE; Onwudili JA; Williams PT
    Waste Manag; 2018 Jun; 76():497-506. PubMed ID: 29559298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study.
    Fermanelli CS; Córdoba A; Pierella LB; Saux C
    Waste Manag; 2020 Feb; 102():362-370. PubMed ID: 31731255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres.
    Alvarez J; Amutio M; Lopez G; Santamaria L; Bilbao J; Olazar M
    Waste Manag; 2019 Feb; 85():385-395. PubMed ID: 30803593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor.
    Khan SR; Zeeshan M; Masood A
    Waste Manag; 2020 Apr; 106():21-31. PubMed ID: 32179418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental analysis on products distribution and characterization of medical waste pyrolysis with a focus on liquid yield quantity and quality.
    Ullah F; Zhang L; Ji G; Irfan M; Ma D; Li A
    Sci Total Environ; 2022 Jul; 829():154692. PubMed ID: 35318056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of low-oxygen oil via catalytic co-pyrolysis of biogas residue and plastics by ZSM-5.
    Wang W; Sun K; Gong P; Huang Q
    Environ Technol; 2023 May; 44(13):1947-1958. PubMed ID: 34890531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An analytical characterization study on biofuel obtained from pyrolysis of Madhuca longifolia residues.
    Thiru S; Kola R; Thimmaraju MK; Dhanalakshmi CS; Sharma V; Sakthi P; Maguluri LP; Ranganathan L; Lalvani JIJ
    Sci Rep; 2024 Jun; 14(1):14745. PubMed ID: 38926435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.