BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37442252)

  • 1. Applying metabolic flux analysis to hydrogen fermentation using a metabolic network constructed for anaerobic mixed cultures.
    Cheng HH; Whang LM
    Environ Res; 2023 Oct; 235():116636. PubMed ID: 37442252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example.
    Cheng HH; Whang LM; Lin CA; Liu IC; Wu CW
    Bioresour Technol; 2013 Aug; 141():233-9. PubMed ID: 23659760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure.
    Ciranna A; Pawar SS; Santala V; Karp M; van Niel EW
    Microb Cell Fact; 2014 Mar; 13(1):48. PubMed ID: 24678972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics.
    Du Y; Jiang W; Yu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Apr; 112(4):705-15. PubMed ID: 25363722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic flux network and analysis of fermentative hydrogen production.
    Cai G; Jin B; Monis P; Saint C
    Biotechnol Adv; 2011; 29(4):375-87. PubMed ID: 21362466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon and energy balances of glucose fermentation with hydrogenproducing bacterium Citrobacter amalonaticus Y19.
    Oh YK; Park S; Seol EH; Kim SH; Kim MS; Hwang JW; Ryu DD
    J Microbiol Biotechnol; 2008 Mar; 18(3):532-8. PubMed ID: 18388473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flux balance analysis of different carbon source fermentation with hydrogen producing Clostridium butyricum using Cell Net Analyzer.
    Rafieenia R; Chaganti SR
    Bioresour Technol; 2015 Jan; 175():613-8. PubMed ID: 25453441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux network analysis of hydrogen production from crude glycerol by Clostridium pasteurianum.
    Sarma S; Anand A; Dubey VK; Moholkar VS
    Bioresour Technol; 2017 Oct; 242():169-177. PubMed ID: 28456454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WUFlux: an open-source platform for
    He L; Wu SG; Zhang M; Chen Y; Tang YJ
    BMC Bioinformatics; 2016 Nov; 17(1):444. PubMed ID: 27814681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon material distribution and flux analysis under varying glucose concentrations in hydrogen-producing Clostridium tyrobutyricum JM1.
    Jo JH; Kim W
    J Biotechnol; 2016 Jun; 228():103-111. PubMed ID: 27140868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions.
    He L; Xiu Y; Jones JA; Baidoo EEK; Keasling JD; Tang YJ; Koffas MAG
    Metab Eng; 2017 Jan; 39():247-256. PubMed ID: 28017690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens FD-1.
    Shi Y; Weimer PJ; Ralph J
    Antonie Van Leeuwenhoek; 1997 Aug; 72(2):101-9. PubMed ID: 9298188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pool size measurements improve precision of flux estimates but increase sensitivity to unmodeled reactions outside the core network in isotopically nonstationary metabolic flux analysis (INST-MFA).
    Zheng AO; Sher A; Fridman D; Musante CJ; Young JD
    Biotechnol J; 2022 Mar; 17(3):e2000427. PubMed ID: 35085426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced H2 Production and Redirected Metabolic Flux via Overexpression of fhlA and pncB in Klebsiella HQ-3 Strain.
    Jawed M; Pi J; Xu L; Zhang H; Hakeem A; Yan Y
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1113-28. PubMed ID: 26590848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
    Gonzalez JE; Long CP; Antoniewicz MR
    Metab Eng; 2017 Jan; 39():9-18. PubMed ID: 27840237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complete genome sequence of Ethanoligenens harbinense reveals the metabolic pathway of acetate-ethanol fermentation: A novel understanding of the principles of anaerobic biotechnology.
    Li Z; Liu B; Cui H; Ding J; Li H; Xie G; Ren N; Xing D
    Environ Int; 2019 Oct; 131():105053. PubMed ID: 31357089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C metabolic flux analysis at a genome-scale.
    Gopalakrishnan S; Maranas CD
    Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):576-83. PubMed ID: 16685495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical analysis of hydrogen production from mixed culture fermentation under thermophilic condition (60 °C).
    Zheng H; Zeng RJ; O'Sullivan C; Clarke WP
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5165-76. PubMed ID: 27052381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.