BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37442252)

  • 21. Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N₂ and H₂ sparging of open-batch cultures of Clostridium thermocellum ATCC 27405.
    Carere CR; Rydzak T; Cicek N; Levin DB; Sparling R
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2829-40. PubMed ID: 24463715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elucidating acetogenic H2 consumption in dark fermentation using flux balance analysis.
    Lalman JA; Chaganti SR; Moon C; Kim DH
    Bioresour Technol; 2013 Oct; 146():775-778. PubMed ID: 23958339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanism of ethanol-H
    Li Z; Gu J; Ding J; Ren N; Xing D
    Biotechnol Adv; 2021; 46():107679. PubMed ID: 33316366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinguishing anaerobic digestion from electrochemical anaerobic digestion: Metabolic pathways and the role of the microbial community.
    Wang N; Yang Y; Xu K; Long X; Zhang Y; Liu H; Chen T; Li J
    Chemosphere; 2023 Jun; 326():138492. PubMed ID: 36963582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches.
    Ni BJ; Liu H; Nie YQ; Zeng RJ; Du GC; Chen J; Yu HQ
    Biotechnol Bioeng; 2011 Feb; 108(2):345-53. PubMed ID: 20803563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris.
    Barca C; Ranava D; Bauzan M; Ferrasse JH; Giudici-Orticoni MT; Soric A
    Bioresour Technol; 2016 Dec; 221():526-533. PubMed ID: 27686721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemically assisted microbial production of hydrogen from acetate.
    Liu H; Grot S; Logan BE
    Environ Sci Technol; 2005 Jun; 39(11):4317-20. PubMed ID: 15984815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum.
    Rydzak T; Grigoryan M; Cunningham ZJ; Krokhin OV; Ezzati P; Cicek N; Levin DB; Wilkins JA; Sparling R
    Appl Microbiol Biotechnol; 2014; 98(14):6497-510. PubMed ID: 24841118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis.
    Guo W; Chen Y; Wei N; Feng X
    PLoS One; 2016; 11(8):e0161448. PubMed ID: 27532329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinformatics and metabolic flux analysis highlight a new mechanism involved in lactate oxidation in Clostridium tyrobutyricum.
    Munier E; Licandro H; Beuvier E; Cachon R
    Int Microbiol; 2023 Aug; 26(3):501-511. PubMed ID: 36609955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The relationship between methane production metabolic flux and microorganisms in a microbial electrolytic cell coupled anaerobic digestion].
    Liu H; Yang S; Wang N; Liu H; Li J
    Sheng Wu Gong Cheng Xue Bao; 2022 May; 38(5):1889-1902. PubMed ID: 35611736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate.
    Li Y; Jin W; Mu C; Cheng Y; Zhu W
    J Basic Microbiol; 2017 Nov; 57(11):933-940. PubMed ID: 28791723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria.
    McKinlay JB; Harwood CS
    mBio; 2011; 2(2):. PubMed ID: 21427286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into microbial interactions and putative competitive mechanisms during the hydrogen production from tequila vinasses.
    Toledo-Cervantes A; Méndez-Acosta HO; Arreola-Vargas J; Gabriel-Barajas JE; Aguilar-Mota MN; Snell-Castro R
    Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6861-6876. PubMed ID: 36071291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors.
    Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A
    Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods and advances in metabolic flux analysis: a mini-review.
    Antoniewicz MR
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):317-25. PubMed ID: 25613286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isotope-assisted metabolic flux analysis as an equality-constrained nonlinear program for improved scalability and robustness.
    Lugar DJ; Sriram G
    PLoS Comput Biol; 2022 Mar; 18(3):e1009831. PubMed ID: 35324890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.
    Au J; Choi J; Jones SW; Venkataramanan KP; Antoniewicz MR
    Metab Eng; 2014 Nov; 26():23-33. PubMed ID: 25183671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.