BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37442327)

  • 1. Synthesis of Cu
    Gao X; Feng W; Zhang J; Zhang H; Huo S
    Environ Pollut; 2023 Oct; 334():122186. PubMed ID: 37442327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of harmful cyanobacteria Microcystis aeruginosa by Cu
    Gao X; Zhang H; Zhang J; Weng N; Huo S
    Bioresour Technol; 2024 Feb; 394():130259. PubMed ID: 38151210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically recyclable Cu
    Gao X; Feng W; Zhang H; Weng N; Huo S
    Sci Total Environ; 2024 Jan; 907():167903. PubMed ID: 37858828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility and mechanism of removing Microcystis aeruginosa and degrading microcystin-LR by dielectric barrier discharge plasma.
    Wang J; Zhang J; Cheng G; Shangguan Y; Yang G; Liu X
    Chemosphere; 2024 Mar; 352():141436. PubMed ID: 38360412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR.
    Yu J; Zhu H; Shutes B; Wang X
    Environ Pollut; 2022 May; 301():118971. PubMed ID: 35167928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular and aqueous microcystin-LR following laboratory exposures of Microcystis aeruginosa to copper algaecides.
    Iwinski KJ; Calomeni AJ; Geer TD; Rodgers JH
    Chemosphere; 2016 Mar; 147():74-81. PubMed ID: 26761600
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Torres MA; Micheletto J; de Liz MV; Pagioro TA; Rocha Martins LR; Martins de Freitas A
    Photochem Photobiol Sci; 2020 Oct; 19(10):1470-1477. PubMed ID: 32857084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous removal of harmful algal cells and toxins by a Ag
    Fan G; Chen Z; Hong L; Du B; Yan Z; Zhan J; You Y; Ning R; Xiao H
    Sci Total Environ; 2020 Nov; 741():140341. PubMed ID: 32615428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.
    Kinley CM; Iwinski KJ; Hendrikse M; Geer TD; Rodgers JH
    Ecotoxicol Environ Saf; 2017 Nov; 145():591-596. PubMed ID: 28802140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Immolative Polythiophene for Sunlight Inactivation of Harmful Cyanobacteria.
    Lang Y; Wang Y; Zhou R; Wu P
    Environ Sci Technol; 2023 May; 57(20):7800-7808. PubMed ID: 37163388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modified TiO
    Wang X; Wang X; Zhao J; Song J; Su C; Wang Z
    Water Res; 2018 Mar; 131():320-333. PubMed ID: 29306666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of dissolved organic matter's influence on the toxicity of cadmium to the cyanobacterium Microcystis aeruginosa by biochemical and molecular assays.
    Ta M; Wei J; Ye S; Zhang J; Song T; Li M
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):94790-94802. PubMed ID: 37540421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphologically-different cells and colonies cause distinctive performance of coagulative colloidal ozone microbubbles in simultaneously removing bloom-forming cyanobacteria and microcystin-LR.
    Zhang M; Liu J; Wang Y; Yu B; Wu X; Qiang Z; Zhang D; Pan X
    J Hazard Mater; 2022 Aug; 435():128986. PubMed ID: 35487002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of CuSO
    Iwinski KJ; Rodgers JH; Kinley CM; Hendrikse M; Calomeni AJ; McQueen AD; Geer TD; Liang J; Friesen V; Haakensen M
    Chemosphere; 2017 May; 174():538-544. PubMed ID: 28193586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-floating photocatalytic hydrogel for efficient removal of Microcystis aeruginosa and degradation of microcystins-LR.
    Fan G; Chen Z; Gu S; Du B; Wang L
    Chemosphere; 2021 Dec; 284():131283. PubMed ID: 34323790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent photocatalytic inactivation of Microcystis aeruginosa and degradation of microcystin by a copper metal organic framework.
    Yue L; Tao M; Xu L; Wang C; Xu Y; Liu Y; Cao X; White JC; Wang Z
    J Hazard Mater; 2024 Jan; 462():132799. PubMed ID: 37865071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylacetone effectively controlled the secondary metabolites of Microcystis aeruginosa under simulated sunlight irradiation.
    Wang X; Luo Y; Zhang S; Zhou L
    J Environ Sci (China); 2024 Jan; 135():285-295. PubMed ID: 37778804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced removal of Microcystis bloom and microcystin-LR using microcosm constructed wetlands with bioaugmentation of degrading bacteria.
    Wang R; Tai Y; Wan X; Ruan W; Man Y; Wang J; Yang Y; Yang Y
    Chemosphere; 2018 Nov; 210():29-37. PubMed ID: 29980069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of oxidant demand on the release and degradation of microcystin-LR from Microcystis aeruginosa during oxidation.
    Zhang H; Dan Y; Adams CD; Shi H; Ma Y; Eichholz T
    Chemosphere; 2017 Aug; 181():562-568. PubMed ID: 28463731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.