These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37442381)
1. Exergy and environmental analysis of a novel turbine inlet air cooling technique for power augmentation in a CCPP based on waste energy. Espinosa-Cristia JF; Fahad Breesam Y; Mrabet BM; Nuñez Alvarez JR; Abdullaev SS; Kuzichkin OR; Alhassan MS Chemosphere; 2023 Oct; 338():139402. PubMed ID: 37442381 [TBL] [Abstract][Full Text] [Related]
2. Exergy and Exergoeconomic Analyses of a Byproduct Gas-Based Combined Cycle Power Plant with Air Blade Cooling. Liu X; Liu F; Huo Z; Zhang Q ACS Omega; 2022 Feb; 7(6):4908-4920. PubMed ID: 35187310 [TBL] [Abstract][Full Text] [Related]
3. Techno-economic optimization and No Hai T; El-Shafay AS; Goyal V; Alshahri AH; Almujibah HR Chemosphere; 2023 Nov; 342():139782. PubMed ID: 37660791 [TBL] [Abstract][Full Text] [Related]
4. Thermal design and zeotropic working fluids mixture selection optimization for a solar waste heat driven combined cooling and power system. Kheimi M; K Salamah S; A Maddah H; Mustafa Al Bakri Abdullah M Chemosphere; 2023 Sep; 335():139036. PubMed ID: 37245592 [TBL] [Abstract][Full Text] [Related]
5. Performance Optimization and Exergy Analysis of Thermoelectric Heat Recovery System for Gas Turbine Power Plants. Alsaghir AM; Bahk JH Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136463 [TBL] [Abstract][Full Text] [Related]
6. Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization. Baigh TA; Saif MJ; Mustakim A; Nanzeeba F; Khan Y; Ehsan MM Heliyon; 2024 Aug; 10(15):e35748. PubMed ID: 39170498 [TBL] [Abstract][Full Text] [Related]
7. Multiobjective optimization of a cogeneration system based on gas turbine, organic rankine cycle and double-effect absorbtion chiller. Hai T; Alsubai S; Yahya RO; Gemeay E; Sharma K; Alqahtani A; Alanazi A Chemosphere; 2023 Oct; 338():139371. PubMed ID: 37442387 [TBL] [Abstract][Full Text] [Related]
8. Performance assessment and multiobjective optimization of a biomass waste-fired gasification combined cycle for emission reduction. Hai T; Alshahri AH; Mohammed AS; Sharma A; Almujibah HR; Mohammed Metwally AS; Ullah M Chemosphere; 2023 Sep; 334():138980. PubMed ID: 37207897 [TBL] [Abstract][Full Text] [Related]
9. Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle. Ren J; Xu C; Qian Z; Huang W; Wang B Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920520 [TBL] [Abstract][Full Text] [Related]
10. Thermal and environmental optimization of an intercooled gas turbine toward a sustainable environment. Candra O; Ali A; Askar S; S Bhat R; Abdullaev SS; Shahab S; Firas Abdulameer S; Hussien BM; Alsalamy AH; Nomani MZM Chemosphere; 2023 Oct; 339():139624. PubMed ID: 37516320 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System. Wang S; Fu Z Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267142 [TBL] [Abstract][Full Text] [Related]
12. Technical assessment of novel organic Rankine cycle driven cascade refrigeration system using environmental friendly refrigerants: 4E and optimization approaches. Bhuvaneshwaran K; Govindasamy PK Environ Sci Pollut Res Int; 2023 Mar; 30(12):35096-35114. PubMed ID: 36525184 [TBL] [Abstract][Full Text] [Related]
13. Techno-economic and environmental optimization of a combined regenerated gas turbine and supercritical CO Almadani M Chemosphere; 2023 Oct; 338():139527. PubMed ID: 37482316 [TBL] [Abstract][Full Text] [Related]
14. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant. Hosseini R; Babaelahi M; Rafat E Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763 [TBL] [Abstract][Full Text] [Related]
15. Energy and Exergy Analyses of a Solid Oxide Fuel Cell-Gas Turbine-Organic Rankine Cycle Power Plant with Liquefied Natural Gas as Heat Sink. Ahmadi MH; Sadaghiani MS; Pourfayaz F; Ghazvini M; Mahian O; Mehrpooya M; Wongwises S Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265574 [TBL] [Abstract][Full Text] [Related]
16. Exergy and Exergoeconomic Analysis of a Cogeneration Hybrid Solar Organic Rankine Cycle with Ejector. Tashtoush B; Morosuk T; Chudasama J Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286476 [TBL] [Abstract][Full Text] [Related]
17. Comparison of two newly suggested power, refrigeration, and hydrogen production, for moving towards sustainability schemes using improved solar-powered evolutionary algorithm optimization. Hai T; Abd El-Salam NM; Kh TI; Chaturvedi R; El-Shafai W; Farhang B Chemosphere; 2023 Sep; 336():139160. PubMed ID: 37327820 [TBL] [Abstract][Full Text] [Related]
18. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Huang S; Li C; Tan T; Fu P; Wang L; Yang Y Entropy (Basel); 2018 Jan; 20(2):. PubMed ID: 33265180 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic and Economic Analysis of an Integrated Solar Combined Cycle System. Wang S; Fu Z; Sajid S; Zhang T; Zhang G Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265404 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Alibaba M; Pourdarbani R; Manesh MHK; Ochoa GV; Forero JD Heliyon; 2020 Apr; 6(4):e03758. PubMed ID: 32382674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]