These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37442381)
21. Combining Exergy and Pinch Analysis for the Operating Mode Optimization of a Steam Turbine Cogeneration Plant in Wonji-Shoa, Ethiopia. Sharew SS; Di Pretoro A; Yimam A; Negny S; Montastruc L Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920462 [TBL] [Abstract][Full Text] [Related]
22. Multiobjective optimization and performance assessment of a PEM fuel cell-based energy system for multiple products. Chammam A; Kumar Tripathi A; Nuñez Alvarez JR; O Alsaab H; Romero-Parra RM; Mohammad Mayet A; Abdullaev SS Chemosphere; 2023 Oct; 337():139348. PubMed ID: 37379989 [TBL] [Abstract][Full Text] [Related]
23. Multidisiplinary design optimization of a power generation system based on waste energy recovery from an internal combustion engine using organic Rankine cycle and thermoelectric generator. Chammam A; Tripathi AK; Aslla-Quispe AP; Huamán-Romaní YL; Abdullaev SS; Hussien NA; Alkhayyat A; Alsalamy AH; Pant R Chemosphere; 2023 Nov; 340():139876. PubMed ID: 37604339 [TBL] [Abstract][Full Text] [Related]
24. How best management practices affect emissions in gas turbine power plants-An important factor to consider when strengthening emission standards. Zeng J; Xing M; Hou M; England GC; Yan J J Air Waste Manag Assoc; 2018 Sep; 68(9):945-957. PubMed ID: 29701537 [TBL] [Abstract][Full Text] [Related]
25. Techno-economic optimization of a new waste-to-energy plant for electricity, cooling, and desalinated water using various biomass for emission reduction. Hai T; Ma X; Singh Chauhan B; Mahmoud S; Al-Kouz W; Tong J; Salah B Chemosphere; 2023 Oct; 338():139398. PubMed ID: 37406939 [TBL] [Abstract][Full Text] [Related]
26. The Use of Organic Rankine Cycles for Recovering the Heat Lost in the Compression Area of a Cryogenic Air Separation Unit. Ionita C; Bucsa S; Serban A; Dobre C; Dobrovicescu A Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741469 [TBL] [Abstract][Full Text] [Related]
27. Sustainable operations of a combined cycle power plant using artificial intelligence based power prediction. Asghar A; Abdul Hussain Ratlamwala T; Kamal K; Alkahtani M; Mohammad E; Mathavan S Heliyon; 2023 Sep; 9(9):e19562. PubMed ID: 37809797 [TBL] [Abstract][Full Text] [Related]
28. Economic evaluation of improvements in a waste-to-energy combined heat and power plant. Eboh FC; Andersson BÅ; Richards T Waste Manag; 2019 Dec; 100():75-83. PubMed ID: 31525675 [TBL] [Abstract][Full Text] [Related]
29. Thermodynamic Analysis and Optimization of a Novel Power-Water Cogeneration System for Waste Heat Recovery of Gas Turbine. Wang S; Li B Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945962 [TBL] [Abstract][Full Text] [Related]
30. Thermodynamic Modeling and Exergy Analysis of A Combined High-Temperature Proton Exchange Membrane Fuel Cell and ORC System for Automotive Applications. Li Y; Yang M; Ma Z; Zheng M; Song H; Guo X Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555454 [TBL] [Abstract][Full Text] [Related]
31. How to Construct a Combined S-CO Sun E; Hu H; Li H; Liu C; Xu J Entropy (Basel); 2018 Dec; 21(1):. PubMed ID: 33266735 [TBL] [Abstract][Full Text] [Related]
32. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery. Liu P; Shu G; Tian H; Wang X Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265228 [TBL] [Abstract][Full Text] [Related]
33. Optimization of a near-zero-emission energy system for the production of desalinated water and cooling using waste energy of fuel cells. Lu J; Abed AM; Nag K; Fayed M; Deifalla A; Al-Zahrani A; Ghamry NA; Galal AM Chemosphere; 2023 Sep; 336():139035. PubMed ID: 37244560 [TBL] [Abstract][Full Text] [Related]
34. Cost and environmental analysis and optimization of a new and green three-level waste heat recovery-based cogeneration cycle: A comparative study. Nikafshan Rad H; Ghasemi A; Marefati M Heliyon; 2024 Apr; 10(7):e29087. PubMed ID: 38601582 [TBL] [Abstract][Full Text] [Related]
35. Energy, Exergy, Exergoeconomic and Emergy-Based Exergoeconomic (Emergoeconomic) Analyses of a Biomass Combustion Waste Heat Recovery Organic Rankine Cycle. Effatpanah SK; Ahmadi MH; Delbari SH; Lorenzini G Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205502 [TBL] [Abstract][Full Text] [Related]
36. A novel empirical model for predicting the carbon dioxide emission of a gas turbine power plant. Egware HO; Kwasi-Effah CC Heliyon; 2023 Mar; 9(3):e14645. PubMed ID: 36994384 [TBL] [Abstract][Full Text] [Related]
37. A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis. Zang G; Tejasvi S; Ratner A; Lora ES Bioresour Technol; 2018 May; 255():246-256. PubMed ID: 29427876 [TBL] [Abstract][Full Text] [Related]
38. Energy and exergy simulation analysis and comparative study of solar ejector cooling system using TRNSYS for two climates of Iran. Jadidi H; Keyanpour-Rad M; Haghgou H; Chodani B; Kianpour Rad S; Hasheminejad SM Heliyon; 2022 Aug; 8(8):e10144. PubMed ID: 35965984 [TBL] [Abstract][Full Text] [Related]
39. Exergy Analyses of Onion Drying by Convection: Influence of Dryer Parameters on Performance. Castro M; Román C; Echegaray M; Mazza G; Rodriguez R Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265401 [TBL] [Abstract][Full Text] [Related]
40. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation. Dorosz P; Wojcieszak P; Malecha Z Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265145 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]