BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 37442391)

  • 1. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation.
    Zhu Y; Wang Y; He X; Li B; Du S
    Chemosphere; 2023 Oct; 338():139475. PubMed ID: 37442391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation.
    Gulzar ABM; Mazumder PB
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40319-40341. PubMed ID: 35316490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review.
    Manoj SR; Karthik C; Kadirvelu K; Arulselvi PI; Shanmugasundaram T; Bruno B; Rajkumar M
    J Environ Manage; 2020 Jan; 254():109779. PubMed ID: 31726280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil.
    Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria.
    He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y
    Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbe- plant interaction as a sustainable tool for mopping up heavy metal contaminated sites.
    Sorour AA; Khairy H; Zaghloul EH; Zaghloul HAH
    BMC Microbiol; 2022 Jul; 22(1):174. PubMed ID: 35799112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification.
    Qin H; Wang Z; Sha W; Song S; Qin F; Zhang W
    Microorganisms; 2024 Mar; 12(4):. PubMed ID: 38674644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil.
    Yang J; Huang Y; Zhao G; Li B; Qin X; Xu J; Li X
    Chemosphere; 2022 Jun; 296():134045. PubMed ID: 35183585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils.
    Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L
    Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application potential of siderophore-producing rhizobacteria in phytoremediation of heavy metals-contaminated soils: a review].
    Wang YL; Lin QQ; Li Y; Yang XH; Wang SZ; Qiu RL
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):2081-8. PubMed ID: 24175543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions.
    Alves ARA; Yin Q; Oliveira RS; Silva EF; Novo LAB
    Sci Total Environ; 2022 Sep; 838(Pt 4):156435. PubMed ID: 35660615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.
    Jing YD; He ZL; Yang XE
    J Zhejiang Univ Sci B; 2007 Mar; 8(3):192-207. PubMed ID: 17323432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation.
    Sobariu DL; Fertu DIT; Diaconu M; Pavel LV; Hlihor RM; Drăgoi EN; Curteanu S; Lenz M; Corvini PF; Gavrilescu M
    N Biotechnol; 2017 Oct; 39(Pt A):125-134. PubMed ID: 27620529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New advances in plant growth-promoting rhizobacteria for bioremediation.
    Zhuang X; Chen J; Shim H; Bai Z
    Environ Int; 2007 Apr; 33(3):406-13. PubMed ID: 17275086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of three plant growth-promoting bacterial symbiosis with ryegrass for remediation of Cd, Pb, and Zn soil in a mining area.
    Zhao Y; Yao J; Li H; Sunahara G; Li M; Tang C; Duran R; Ma B; Liu H; Feng L; Zhu J; Wu Y
    J Environ Manage; 2024 Feb; 353():120167. PubMed ID: 38308995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review.
    Ashraf MA; Hussain I; Rasheed R; Iqbal M; Riaz M; Arif MS
    J Environ Manage; 2017 Aug; 198(Pt 1):132-143. PubMed ID: 28456029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation.
    Yang Z; Yang F; Liu JL; Wu HT; Yang H; Shi Y; Liu J; Zhang YF; Luo YR; Chen KM
    Sci Total Environ; 2022 Feb; 809():151099. PubMed ID: 34688763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.