BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 37442576)

  • 1. Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in
    Grandchamp A; Kühl L; Lebherz M; Brüggemann K; Parsch J; Bornberg-Bauer E
    Genome Res; 2023 Jun; 33(6):872-890. PubMed ID: 37442576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences.
    Reinhardt JA; Wanjiru BM; Brant AT; Saelao P; Begun DJ; Jones CD
    PLoS Genet; 2013; 9(10):e1003860. PubMed ID: 24146629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Transposons favour de novo transcript emergence through enrichment of transcription factor binding motifs.
    Lebherz MK; Fouks B; Schmidt J; Bornberg-Bauer E; Grandchamp A
    Genome Biol Evol; 2024 Jun; ():. PubMed ID: 38934893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population-specific dynamics and selection patterns of transposable element insertions in European natural populations.
    Lerat E; Goubert C; Guirao-Rico S; Merenciano M; Dufour AB; Vieira C; González J
    Mol Ecol; 2019 Mar; 28(6):1506-1522. PubMed ID: 30506554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Length Changes in De Novo Open Reading Frames during Neutral Evolution.
    Lebherz MK; Iyengar BR; Bornberg-Bauer E
    Genome Biol Evol; 2024 Jul; 16(7):. PubMed ID: 38879874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-specific chromatin landscape determines how transposable elements shape genome evolution.
    Huang Y; Shukla H; Lee YCG
    Elife; 2022 Aug; 11():. PubMed ID: 35997258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population genomics of transposable elements in Drosophila.
    Barrón MG; Fiston-Lavier AS; Petrov DA; González J
    Annu Rev Genet; 2014; 48():561-81. PubMed ID: 25292358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification and modeling of turnover dynamics of de novo transcripts in Drosophila melanogaster.
    Grandchamp A; Czuppon P; Bornberg-Bauer E
    Nucleic Acids Res; 2024 Jan; 52(1):274-287. PubMed ID: 38000384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Only a Single Taxonomically Restricted Gene Family in the Drosophila melanogaster Subgroup Can Be Identified with High Confidence.
    Zile K; Dessimoz C; Wurm Y; Masel J
    Genome Biol Evol; 2020 Aug; 12(8):1355-1366. PubMed ID: 32589737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid evolution of piRNA clusters in the
    Srivastav S; Feschotte C; Clark AG
    bioRxiv; 2023 May; ():. PubMed ID: 37214865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein evidence of unannotated ORFs in
    Zheng EB; Zhao L
    Elife; 2022 Sep; 11():. PubMed ID: 36178469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome.
    Lipatov M; Lenkov K; Petrov DA; Bergman CM
    BMC Biol; 2005 Nov; 3():24. PubMed ID: 16283942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements.
    McCoy RC; Taylor RW; Blauwkamp TA; Kelley JL; Kertesz M; Pushkarev D; Petrov DA; Fiston-Lavier AS
    PLoS One; 2014; 9(9):e106689. PubMed ID: 25188499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Validation of Transposable Element Insertions Using the Polymerase Chain Reaction (PCR).
    Merenciano M; Coronado-Zamora M; González J
    Methods Mol Biol; 2023; 2607():95-114. PubMed ID: 36449160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population genomics of transposable elements in Drosophila melanogaster.
    Petrov DA; Fiston-Lavier AS; Lipatov M; Lenkov K; González J
    Mol Biol Evol; 2011 May; 28(5):1633-44. PubMed ID: 21172826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in piRNA and transposable element content in strains of Drosophila melanogaster.
    Song J; Liu J; Schnakenberg SL; Ha H; Xing J; Chen KC
    Genome Biol Evol; 2014 Sep; 6(10):2786-98. PubMed ID: 25267446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations.
    Zhang S; Pointer B; Kelleher ES
    Genome Res; 2020 Apr; 30(4):566-575. PubMed ID: 32238416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopore sequencing and Hi-C scaffolding provide insight into the evolutionary dynamics of transposable elements and piRNA production in wild strains of Drosophila melanogaster.
    Ellison CE; Cao W
    Nucleic Acids Res; 2020 Jan; 48(1):290-303. PubMed ID: 31754714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover.
    Schmitz JF; Ullrich KK; Bornberg-Bauer E
    Nat Ecol Evol; 2018 Oct; 2(10):1626-1632. PubMed ID: 30201962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic Gain and Loss of Novel Transcribed Open Reading Frames in the Human Lineage.
    Dowling D; Schmitz JF; Bornberg-Bauer E
    Genome Biol Evol; 2020 Nov; 12(11):2183-2195. PubMed ID: 33210146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.