These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37443110)

  • 21. Envirotyping for deciphering environmental impacts on crop plants.
    Xu Y
    Theor Appl Genet; 2016 Apr; 129(4):653-673. PubMed ID: 26932121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decoding Plant-Environment Interactions That Influence Crop Agronomic Traits.
    Mochida K; Nishii R; Hirayama T
    Plant Cell Physiol; 2020 Aug; 61(8):1408-1418. PubMed ID: 32392328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pragmatic MDR: a metadata repository with bottom-up standardization of medical metadata through reuse.
    Hegselmann S; Storck M; Gessner S; Neuhaus P; Varghese J; Bruland P; Meidt A; Mertens C; Riepenhausen S; Baier S; Stöcker B; Henke J; Schmidt CO; Dugas M
    BMC Med Inform Decis Mak; 2021 May; 21(1):160. PubMed ID: 34001121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opportunities and limits of controlled-environment plant phenotyping for climate response traits.
    Langstroff A; Heuermann MC; Stahl A; Junker A
    Theor Appl Genet; 2022 Jan; 135(1):1-16. PubMed ID: 34302493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FAIR assessment of nanosafety data reusability with community standards.
    Ammar A; Evelo C; Willighagen E
    Sci Data; 2024 May; 11(1):503. PubMed ID: 38755173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput plant phenotyping: a role for metabolomics?
    Hall RD; D'Auria JC; Silva Ferreira AC; Gibon Y; Kruszka D; Mishra P; van de Zedde R
    Trends Plant Sci; 2022 Jun; 27(6):549-563. PubMed ID: 35248492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic QTL-based ecophysiological models to predict phenotype from genotype and environment data.
    Vallejos CE; Jones JW; Bhakta MS; Gezan SA; Correll MJ
    BMC Plant Biol; 2022 Jun; 22(1):275. PubMed ID: 35658831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Data-driven approaches can harness crop diversity to address heterogeneous needs for breeding products.
    van Etten J; de Sousa K; Cairns JE; Dell'Acqua M; Fadda C; Guereña D; Heerwaarden JV; Assefa T; Manners R; Müller A; Enrico Pè M; Polar V; Ramirez-Villegas J; Øivind Solberg S; Teeken B; Tufan HA
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2205771120. PubMed ID: 36972430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Registration of spatio-temporal point clouds of plants for phenotyping.
    Chebrolu N; Magistri F; Läbe T; Stachniss C
    PLoS One; 2021; 16(2):e0247243. PubMed ID: 33630896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developing a standardized but extendable framework to increase the findability of infectious disease datasets.
    Tsueng G; Cano MAA; Bento J; Czech C; Kang M; Pache L; Rasmussen LV; Savidge TC; Starren J; Wu Q; Xin J; Yeaman MR; Zhou X; Su AI; Wu C; Brown L; Shabman RS; Hughes LD;
    Sci Data; 2023 Feb; 10(1):99. PubMed ID: 36823157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FAIRifying Clinical Studies Metadata: A Registry for the Biomedical Research.
    Meloni V; Sulis A; Mascia C; Frexia F
    Stud Health Technol Inform; 2021 May; 281():779-783. PubMed ID: 34042684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant phenomics: High-throughput technology for accelerating genomics.
    Pasala R; Pandey BB
    J Biosci; 2020; 45():. PubMed ID: 32975238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FAIR-Checker: supporting digital resource findability and reuse with Knowledge Graphs and Semantic Web standards.
    Gaignard A; Rosnet T; De Lamotte F; Lefort V; Devignes MD
    J Biomed Semantics; 2023 Jul; 14(1):7. PubMed ID: 37393296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From Raw Data to FAIR Data: The FAIRification Workflow for Health Research.
    Sinaci AA; Núñez-Benjumea FJ; Gencturk M; Jauer ML; Deserno T; Chronaki C; Cangioli G; Cavero-Barca C; Rodríguez-Pérez JM; Pérez-Pérez MM; Laleci Erturkmen GB; Hernández-Pérez T; Méndez-Rodríguez E; Parra-Calderón CL
    Methods Inf Med; 2020 Jun; 59(S 01):e21-e32. PubMed ID: 32620019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges for a Massive Implementation of Phenomics in Plant Breeding Programs.
    Lobos GA; Estrada F; Del Pozo A; Romero-Bravo S; Astudillo CA; Mora-Poblete F
    Methods Mol Biol; 2022; 2539():135-157. PubMed ID: 35895202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Root phenotyping: from component trait in the lab to breeding.
    Kuijken RC; van Eeuwijk FA; Marcelis LF; Bouwmeester HJ
    J Exp Bot; 2015 Sep; 66(18):5389-401. PubMed ID: 26071534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective.
    Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management.
    Reynolds D; Ball J; Bauer A; Davey R; Griffiths S; Zhou J
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30715329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.