These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37443203)

  • 1. Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application.
    Firoozi A; Amphawan A; Khordad R; Mohammadi A; Jalali T; Edet CO; Ali N
    Sci Rep; 2023 Jul; 13(1):11325. PubMed ID: 37443203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells.
    Jain PK; El-Sayed MA
    Nano Lett; 2007 Sep; 7(9):2854-8. PubMed ID: 17676810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape effect on a single-nanoparticle-based plasmonic nanosensor.
    Shen H; Lu G; Zhang T; Liu J; Gu Y; Perriat P; Martini M; Tillement O; Gong Q
    Nanotechnology; 2013 Jul; 24(28):285502. PubMed ID: 23792456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon resonances of GZO core-Ag shell nanospheres, nanorods, and nanodisks for biosensing and biomedical applications in near-infrared biological windows I and II.
    Moustafa S; Almarashi JQM; Zayed MK; Almokhtar M; Rashad M; Fares H
    Phys Chem Chem Phys; 2024 Jun; 26(25):17817-17829. PubMed ID: 38884203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced refractive index sensitivity of localized surface plasmon resonance inflection points in single hollow gold nanospheres with inner cavity.
    Hong YA; Ha JW
    Sci Rep; 2022 Apr; 12(1):6983. PubMed ID: 35484278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity.
    Fofang NT; Grady NK; Fan Z; Govorov AO; Halas NJ
    Nano Lett; 2011 Apr; 11(4):1556-60. PubMed ID: 21417362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-satellite assembly of gold nanoshells on solid gold nanoparticles for a color coding plasmonic nanosensor.
    Le NH; Cathcart N; Kitaev V; Chen JIL
    Analyst; 2021 Dec; 147(1):155-164. PubMed ID: 34860213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing the size, shape, morphology, and localized surface plasmon resonance of individual gold nanoshells by near-infrared multispectral imaging microscopy.
    Mejac I; Bryan WW; Lee TR; Tran CD
    Anal Chem; 2009 Aug; 81(16):6687-94. PubMed ID: 19618908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes.
    Fofang NT; Park TH; Neumann O; Mirin NA; Nordlander P; Halas NJ
    Nano Lett; 2008 Oct; 8(10):3481-7. PubMed ID: 18729410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-silver alloy semi-nanoshell arrays for label-free plasmonic biosensors.
    Russo V; Michieli N; Cesca T; Scian C; Silvestri D; Morpurgo M; Mattei G
    Nanoscale; 2017 Jul; 9(28):10117-10125. PubMed ID: 28695942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy absorption of gold nanoshells in hyperthermia therapy.
    Liu C; Mi CC; Li BQ
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):206-14. PubMed ID: 18779101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable optical antennas based on metallic nanoshells with nanoknobs.
    Denisyuk AI; Tinskaya MA; Petrov MI; Shelaev AV; Dorozhkin PS
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8651-5. PubMed ID: 23421259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backward-scattering-based Localized Surface Plasmon Resonance Sensors with Gold Nanospheres and Nanoshells.
    Kawawaki T; Shinjo N; Tatsuma T
    Anal Sci; 2016; 32(3):271-4. PubMed ID: 26960604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individually Dispersed Gold Nanoshell-Bearing Cellulose Nanocrystals with Tailorable Plasmon Resonance.
    Semenikhin NS; Kadasala NR; Moon RJ; Perry JW; Sandhage KH
    Langmuir; 2018 Apr; 34(15):4427-4436. PubMed ID: 29577731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of parameters influencing plasmonic nanoparticle-mediated bubble generation with nanosecond laser pulses.
    Fales AM; Vogt WC; Wear KA; Pfefer TJ; Ilev IK
    J Biomed Opt; 2019 Jun; 24(6):1-10. PubMed ID: 31230425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy.
    Cheong SK; Krishnan S; Cho SH
    Med Phys; 2009 Oct; 36(10):4664-71. PubMed ID: 19928098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.