These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37443203)

  • 21. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning of the surface plasmon resonance of aluminum nanoshell near-infrared regimes.
    Pathak NK; Parthasarathi ; Kumar PS; Sharma RP
    Phys Chem Chem Phys; 2019 May; 21(18):9441-9449. PubMed ID: 31012464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shedding light on the growth of gold nanoshells.
    Sauerbeck C; Haderlein M; Schürer B; Braunschweig B; Peukert W; Klupp Taylor RN
    ACS Nano; 2014 Mar; 8(3):3088-96. PubMed ID: 24552660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells.
    Li BQ; Liu C
    Opt Lett; 2011 Jan; 36(2):247-9. PubMed ID: 21263515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy.
    Garrett N; Whiteman M; Moger J
    Opt Express; 2011 Aug; 19(18):17563-74. PubMed ID: 21935123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanorice: a hybrid plasmonic nanostructure.
    Wang H; Brandl DW; Le F; Nordlander P; Halas NJ
    Nano Lett; 2006 Apr; 6(4):827-32. PubMed ID: 16608292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Label-Free Detection of Tear Biomarkers Using Hydrogel-Coated Gold Nanoshells in a Localized Surface Plasmon Resonance-Based Biosensor.
    Culver HR; Wechsler ME; Peppas NA
    ACS Nano; 2018 Sep; 12(9):9342-9354. PubMed ID: 30204412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells.
    Wu T; Yang S; Li X
    Opt Express; 2013 Mar; 21(6):7811-20. PubMed ID: 23546162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying high performance gold nanoshells for singlet oxygen generation enhancement.
    Farooq S; de Araujo RE
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102466. PubMed ID: 34343668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable hybridization in metal nanoshell chains.
    Ling CW; Zheng MJ; Yu KW
    J Phys Condens Matter; 2011 Mar; 23(10):105304. PubMed ID: 21339586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring the gold nanoshell growth mechanism: stabilizing and destabilizing effects of PEG-SH molecules.
    Gordel-Wójcik M; Piela K; Kołkowski R
    Phys Chem Chem Phys; 2022 Mar; 24(9):5700-5709. PubMed ID: 35187554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Throughput Synthesis of Nanogap-Rich Gold Nanoshells Using Dual-Channel Infusion System.
    Kim YH; Cho HS; Yoo K; Ham KM; Kang H; Pham XH; Jun BH
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potentials and pitfalls of gold-silica nanoshell as the exogenous contrast agent for optical diagnosis of cancers: a numerical parametric study.
    Xu X
    Lasers Med Sci; 2019 Apr; 34(3):615-628. PubMed ID: 30350124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photon amplification and cavity-polariton-like generation in metallic nanoshells localized in optical cavity.
    Zhang Y
    Opt Express; 2023 Feb; 31(4):5640-5649. PubMed ID: 36823838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The optical property of core-shell nanosensors and detection of atrazine based on localized surface plasmon resonance (LSPR) sensing.
    Yang S; Wu T; Zhao X; Li X; Tan W
    Sensors (Basel); 2014 Jul; 14(7):13273-84. PubMed ID: 25057137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoshell-based substrates for surface enhanced spectroscopic detection of biomolecules.
    Levin CS; Kundu J; Barhoumi A; Halas NJ
    Analyst; 2009 Sep; 134(9):1745-50. PubMed ID: 19684894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells.
    Mann D; Nascimento-Duplat D; Keul H; Möller M; Verheijen M; Xu M; Urbach HP; Adam AJL; Buskens P
    Plasmonics; 2017; 12(3):929-945. PubMed ID: 28539851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrahigh sensitive refractive index nanosensors based on nanoshells, nanocages and nanoframes: effects of plasmon hybridization and restoring force.
    Omrani M; Mohammadi H; Fallah H
    Sci Rep; 2021 Jan; 11(1):2065. PubMed ID: 33483573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF; Lin YJ; Tsai DP
    Opt Express; 2010 Feb; 18(4):3510-8. PubMed ID: 20389360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.