These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37443324)

  • 1. Active querying approach to epidemic source detection on contact networks.
    Sterchi M; Hilfiker L; Grütter R; Bernstein A
    Sci Rep; 2023 Jul; 13(1):11363. PubMed ID: 37443324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian generative neural network framework for epidemic inference problems.
    Biazzo I; Braunstein A; Dall'Asta L; Mazza F
    Sci Rep; 2022 Nov; 12(1):19673. PubMed ID: 36385141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CUFID-query: accurate network querying through random walk based network flow estimation.
    Jeong H; Qian X; Yoon BJ
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):500. PubMed ID: 29297279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic mitigation by statistical inference from contact tracing data.
    Baker A; Biazzo I; Braunstein A; Catania G; Dall'Asta L; Ingrosso A; Krzakala F; Mazza F; Mézard M; Muntoni AP; Refinetti M; Sarao Mannelli S; Zdeborová L
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34312253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference of epidemics on networks via belief propagation.
    Altarelli F; Braunstein A; Dall'Asta L; Lage-Castellanos A; Zecchina R
    Phys Rev Lett; 2014 Mar; 112(11):118701. PubMed ID: 24702425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient vaccination strategies for epidemic control using network information.
    Yang Y; McKhann A; Chen S; Harling G; Onnela JP
    Epidemics; 2019 Jun; 27():115-122. PubMed ID: 30878314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of causality in epidemics on temporal contact networks.
    Braunstein A; Ingrosso A
    Sci Rep; 2016 Jun; 6():27538. PubMed ID: 27283451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic predictions of SIS epidemics on networks based on population-level observations.
    Zerenner T; Di Lauro F; Dashti M; Berthouze L; Kiss IZ
    Math Biosci; 2022 Aug; 350():108854. PubMed ID: 35659615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bayesian approach for modeling cattle movements in the United States: scaling up a partially observed network.
    Lindström T; Grear DA; Buhnerkempe M; Webb CT; Miller RS; Portacci K; Wennergren U
    PLoS One; 2013; 8(1):e53432. PubMed ID: 23308223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian inference of spreading processes on networks.
    Dutta R; Mira A; Onnela JP
    Proc Math Phys Eng Sci; 2018 Jul; 474(2215):20180129. PubMed ID: 30100809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion Source Inference for Large-Scale Complex Networks Based on Network Percolation.
    Liu Y; Wang X; Wang X; Wang Z; Kurths J
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37831555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical Analysis of the Dynamics of the COVID-19 Epidemic in Urban Embedded Social Networks.
    Wang Z; Zhuang Y; Fan C
    Front Public Health; 2022; 10():879340. PubMed ID: 35712301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigate SIR epidemic spreading via contact blocking in temporal networks.
    Zhang S; Zhao X; Wang H
    Appl Netw Sci; 2022; 7(1):2. PubMed ID: 35013715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network inference from population-level observation of epidemics.
    Di Lauro F; Croix JC; Dashti M; Berthouze L; Kiss IZ
    Sci Rep; 2020 Nov; 10(1):18779. PubMed ID: 33139773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal dynamics of connectivity and epidemic properties of growing networks.
    Fotouhi B; Shirkoohi MK
    Phys Rev E; 2016 Jan; 93(1):012301. PubMed ID: 26871086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunization strategies for epidemic processes in time-varying contact networks.
    Starnini M; Machens A; Cattuto C; Barrat A; Pastor-Satorras R
    J Theor Biol; 2013 Nov; 337():89-100. PubMed ID: 23871715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing a transmission network and identifying risk factors of secondary transmissions in the 2010 foot-and-mouth disease outbreak in Japan.
    Hayama Y; Firestone SM; Stevenson MA; Yamamoto T; Nishi T; Shimizu Y; Tsutsui T
    Transbound Emerg Dis; 2019 Sep; 66(5):2074-2086. PubMed ID: 31131968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.