These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Technical feasibility of newborn screening for spinal muscular atrophy by next-generation DNA sequencing. Shum BOV; Henner I; Cairns A; Pretorius C; Wilgen U; Barahona P; Ungerer JPJ; Bennett G Front Genet; 2023; 14():1095600. PubMed ID: 36713073 [TBL] [Abstract][Full Text] [Related]
3. Application of a next-generation sequencing (NGS) panel in newborn screening efficiently identifies inborn disorders of neonates. Huang X; Wu D; Zhu L; Wang W; Yang R; Yang J; He Q; Zhu B; You Y; Xiao R; Zhao Z Orphanet J Rare Dis; 2022 Feb; 17(1):66. PubMed ID: 35193651 [TBL] [Abstract][Full Text] [Related]
4. Insights into National Laboratory Newborn Screening and Future Prospects. Mujamammi AH Medicina (Kaunas); 2022 Feb; 58(2):. PubMed ID: 35208595 [TBL] [Abstract][Full Text] [Related]
5. A New Integrated Newborn Screening Workflow Can Provide a Shortcut to Differential Diagnosis and Confirmation of Inherited Metabolic Diseases. Ko JM; Park KS; Kang Y; Nam SH; Kim Y; Park I; Chae HW; Lee SM; Lee KA; Kim JW Yonsei Med J; 2018 Jul; 59(5):652-661. PubMed ID: 29869463 [TBL] [Abstract][Full Text] [Related]
6. A Population-Based Genomic Study of Inherited Metabolic Diseases Detected Through Newborn Screening. Park KJ; Park S; Lee E; Park JH; Park JH; Park HD; Lee SY; Kim JW Ann Lab Med; 2016 Nov; 36(6):561-72. PubMed ID: 27578510 [TBL] [Abstract][Full Text] [Related]
8. Feasibility of Screening for Chromosome 15 Imprinting Disorders in 16 579 Newborns by Using a Novel Genomic Workflow. Godler DE; Ling L; Gamage D; Baker EK; Bui M; Field MJ; Rogers C; Butler MG; Murgia A; Leonardi E; Polli R; Schwartz CE; Skinner CD; Alliende AM; Santa Maria L; Pitt J; Greaves R; Francis D; Oertel R; Wang M; Simons C; Amor DJ JAMA Netw Open; 2022 Jan; 5(1):e2141911. PubMed ID: 34982160 [TBL] [Abstract][Full Text] [Related]
9. Utility of whole-genome sequencing for detection of newborn screening disorders in a population cohort of 1,696 neonates. Bodian DL; Klein E; Iyer RK; Wong WS; Kothiyal P; Stauffer D; Huddleston KC; Gaither AD; Remsburg I; Khromykh A; Baker RL; Maxwell GL; Vockley JG; Niederhuber JE; Solomon BD Genet Med; 2016 Mar; 18(3):221-30. PubMed ID: 26334177 [TBL] [Abstract][Full Text] [Related]
10. Diagnosing cystic fibrosis in newborn screening in Poland - 15 years of experience. Sands D; Zybert K; Mierzejewska E; Ołtarzewski M Dev Period Med; 2015; 19(1):16-24. PubMed ID: 26003066 [TBL] [Abstract][Full Text] [Related]
11. Newborn screening with targeted sequencing: a multicenter investigation and a pilot clinical study in China. Hao C; Guo R; Hu X; Qi Z; Guo Q; Liu X; Liu Y; Sun Y; Zhang X; Jin F; Wu X; Cai R; Zeng D; Hu X; Wang X; Ji X; Li W; Xing Q; Mu L; Jiang X; Yang X; Yang W; Zhang Y; Yin Q; Ni X; Li W J Genet Genomics; 2022 Jan; 49(1):13-19. PubMed ID: 34474183 [TBL] [Abstract][Full Text] [Related]
12. Implementation of a Targeted Next-Generation Sequencing Panel for Constitutional Newborn Screening in High-Risk Neonates. Lee H; Lim J; Shin JE; Eun HS; Park MS; Park KI; Namgung R; Lee JS Yonsei Med J; 2019 Nov; 60(11):1061-1066. PubMed ID: 31637888 [TBL] [Abstract][Full Text] [Related]
13. First-Tier Next Generation Sequencing for Newborn Screening: An Important Role for Biochemical Second-Tier Testing. Stenton SL; Campagna M; Philippakis A; O'Donnell-Luria A; Gelb MH Genet Med Open; 2023; 1(1):. PubMed ID: 39238532 [TBL] [Abstract][Full Text] [Related]
14. Design and Validation of a Custom NGS Panel Targeting a Set of Lysosomal Storage Diseases Candidate for NBS Applications. La Cognata V; Guarnaccia M; Morello G; Ruggieri M; Polizzi A; Cavallaro S Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576242 [TBL] [Abstract][Full Text] [Related]
15. High Incidence of Severe Combined Immunodeficiency Disease in Saudi Arabia Detected Through Combined T Cell Receptor Excision Circle and Next Generation Sequencing of Newborn Dried Blood Spots. Al-Mousa H; Al-Dakheel G; Jabr A; Elbadaoui F; Abouelhoda M; Baig M; Monies D; Meyer B; Hawwari A; Dasouki M Front Immunol; 2018; 9():782. PubMed ID: 29713328 [TBL] [Abstract][Full Text] [Related]
16. Next-generation sequencing as a second-tier diagnostic test for newborn screening. Luo X; Wang R; Fan Y; Gu X; Yu Y J Pediatr Endocrinol Metab; 2018 Aug; 31(8):927-931. PubMed ID: 30030962 [TBL] [Abstract][Full Text] [Related]
17. Improving newborn screening for cystic fibrosis using next-generation sequencing technology: a technical feasibility study. Baker MW; Atkins AE; Cordovado SK; Hendrix M; Earley MC; Farrell PM Genet Med; 2016 Mar; 18(3):231-8. PubMed ID: 25674778 [TBL] [Abstract][Full Text] [Related]
18. Whole-Genome Screening of Newborns? The Constitutional Boundaries of State Newborn Screening Programs. King JS; Smith ME Pediatrics; 2016 Jan; 137 Suppl 1(Suppl 1):S8-15. PubMed ID: 26729704 [TBL] [Abstract][Full Text] [Related]
19. Methods and feasibility study for exome sequencing as a universal second-tier test in newborn screening. Ruiz-Schultz N; Sant D; Norcross S; Dansithong W; Hart K; Asay B; Little J; Chung K; Oakeson KF; Young EL; Eilbeck K; Rohrwasser A Genet Med; 2021 Apr; 23(4):767-776. PubMed ID: 33442025 [TBL] [Abstract][Full Text] [Related]
20. Newborn screening for lysosomal diseases: current status and potential interface with population medical genetics in Latin America. Giugliani R J Inherit Metab Dis; 2012 Sep; 35(5):871-7. PubMed ID: 22231381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]