BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37443684)

  • 1. A Framework for Prediction of Oncogenomic Progression Aiding Personalized Treatment of Gastric Cancer.
    Alotaibi FM; Khan YD
    Diagnostics (Basel); 2023 Jul; 13(13):. PubMed ID: 37443684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EDLM: Ensemble Deep Learning Model to Detect Mutation for the Early Detection of Cholangiocarcinoma.
    Shah AA; Alturise F; Alkhalifah T; Faisal A; Khan YD
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Approaches for Detection of Breast Adenocarcinoma Causing Carcinogenic Mutations.
    Shah AA; Alturise F; Alkhalifah T; Khan YD
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of deep learning techniques for identification of sarcoma-causing carcinogenic mutations.
    Shah AA; Alturise F; Alkhalifah T; Khan YD
    Digit Health; 2022; 8():20552076221133703. PubMed ID: 36312852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ensemble-based deep learning model for detection of mutation causing cutaneous melanoma.
    Ali Shah A; Shaker ASA; Jabbar S; Abbas Q; Al-Balawi TS; Celebi ME
    Sci Rep; 2023 Dec; 13(1):22251. PubMed ID: 38097641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Character gated recurrent neural networks for Arabic sentiment analysis.
    Omara E; Mousa M; Ismail N
    Sci Rep; 2022 Jun; 12(1):9779. PubMed ID: 35697814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a Convolutional Neural Network and Convolutional Long Short-term Memory to Automatically Detect Aneurysms on 2D Digital Subtraction Angiography Images: Framework Development and Validation.
    Liao J; Liu L; Duan H; Huang Y; Zhou L; Chen L; Wang C
    JMIR Med Inform; 2022 Mar; 10(3):e28880. PubMed ID: 35294371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine Learning Model Based on GRU and LSTM to Predict the Environmental Parameters in a Layer House, Taking CO
    Chen X; Yang L; Xue H; Li L; Yu Y
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traffic flow prediction using bi-directional gated recurrent unit method.
    Wang S; Shao C; Zhang J; Zheng Y; Meng M
    Urban Inform; 2022; 1(1):16. PubMed ID: 36471871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual field prediction using a deep bidirectional gated recurrent unit network model.
    Kim H; Lee J; Moon S; Kim S; Kim T; Jin SW; Kim JL; Shin J; Lee SU; Jang G; Hu Y; Park JR
    Sci Rep; 2023 Jul; 13(1):11154. PubMed ID: 37429862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting the Status of Municipal Waste in Smart Bins Using Deep Learning.
    Ahmed S; Mubarak S; Du JT; Wibowo S
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks.
    Mahjoub S; Chrifi-Alaoui L; Marhic B; Delahoche L
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based prediction for time-dependent chloride penetration in concrete exposed to coastal environment.
    Wu L; Wang W; Jiang C
    Heliyon; 2023 Jun; 9(6):e16869. PubMed ID: 37313145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended-Range Prediction Model Using NSGA-III Optimized RNN-GRU-LSTM for Driver Stress and Drowsiness.
    Chui KT; Gupta BB; Liu RW; Zhang X; Vasant P; Thomas JJ
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Robust Framework for Data Generative and Heart Disease Prediction Based on Efficient Deep Learning Models.
    Sarra RR; Dinar AM; Mohammed MA; Ghani MKA; Albahar MA
    Diagnostics (Basel); 2022 Nov; 12(12):. PubMed ID: 36552906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conditional random field based feature learning framework for battery capacity prediction.
    Wang HK; Zhang Y; Huang M
    Sci Rep; 2022 Aug; 12(1):13221. PubMed ID: 35918374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network.
    Zhu L; Huang L; Fan L; Huang J; Huang F; Chen J; Zhang Z; Wang Y
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32178235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model.
    Lv J; Wang C; Gao W; Zhao Q
    Comput Intell Neurosci; 2021; 2021():8128879. PubMed ID: 34621309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.